1 |
MUR-ARTAL R , MONTIEL J M M , TARDOS J D . ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society, 2015, 31 (5): 1147- 1163.
|
2 |
MUR-ARTAL R , TARDÓS J D . ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262.
doi: 10.1109/TRO.2017.2705103
|
3 |
CAMPOS C , ELVIRA R , RODRÍGUEZ J J G , et al. ORB-SLAM3:an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Transactions on Robotics, 2021, 37 (6): 1874- 1890.
doi: 10.1109/TRO.2021.3075644
|
4 |
高翔, 张涛, 刘毅. 视觉SLAM十四讲: 从理论到实践. 北京: 电子工业出版社, 2017.
|
|
GAO X , ZHANG T , LIU Y . Fourteen lectures on visual SLAM: from theory to practice. Beijing: Publishing House of Electronics Industry, 2017.
|
5 |
FU Q , YU H S , WANG X L , et al. Fast ORB-SLAM without keypoint descriptors. IEEE Transactions on Image Processing, 2022, 31, 1433- 1446.
doi: 10.1109/TIP.2021.3136710
|
6 |
LIU H M , ZHANG Q Q , FAN B , et al. Features combined binary descriptor based on voted ring-sampling pattern. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30 (10): 3675- 3687.
doi: 10.1109/TCSVT.2019.2943595
|
7 |
TANG J X , ERICSON L , FOLKESSON J , et al. GCNv2:efficient correspondence prediction for real-time SLAM. IEEE Robotics and Automation Letters, 2019, 4 (4): 3505- 3512.
|
8 |
DUAN Y Q, LU J W, WANG Z W, et al. Learning deep binary descriptor with multi-quantization[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 4857-4866.
|
9 |
LIN K , LU J W , CHEN C S , et al. Unsupervised deep learning of compact binary descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (6): 1501- 1514.
doi: 10.1109/TPAMI.2018.2833865
|
10 |
DAI Z, HUANG X H, CHEN W N, et al. A comparison of CNN-based and hand-crafted keypoint descriptors[C]//Proceedings of International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2019: 2399-2404.
|
11 |
ZUO X X, XIE X J, LIU Y, et al. Robust visual SLAM with point and line features[C]//Proceedings of International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2017: 1775-1782.
|
12 |
GOMEZ-OJEDA R , MORENO F A , ZUÑIGA-NOËL D , et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments. IEEE Transactions on Robotics, 2019, 35 (3): 734- 746.
doi: 10.1109/TRO.2019.2899783
|
13 |
LI Q A , KANG J A , WANG Y X , et al. An improved feature matching ORB-SLAM algorithm. Journal of Physics: Conference Series, 2020, 1693 (1): 1- 10.
|
14 |
杨弘凡, 李航, 陈凯阳, 等. 基于改进ORB算法的图像特征点提取与匹配方法. 图学学报, 2020, 41 (4): 548- 555.
URL
|
|
YANG H F , LI H , CHEN K Y , et al. Image feature points extraction and matching method based on improved ORB algorithm. Journal of Graphics, 2020, 41 (4): 548- 555.
URL
|
15 |
廖泓真, 王亮, 孙宏伟, 等. 一种改进的ORB特征匹配算法. 北京航空航天大学学报, 2021, 47 (10): 2149- 2154.
URL
|
|
LIAO H Z , WANG L , SUN H W , et al. An improved ORB feature matching algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (10): 2149- 2154.
URL
|
16 |
TATENO K, TOMBARI F, LAINA I, et al. CNN-SLAM: real-time dense monocular SLAM with learned depth prediction[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 6565-6574.
|
17 |
MATSUKI H , SCONA R , CZARNOWSKI J , et al. CodeMapping: real-time dense mapping for sparse SLAM using compact scene representations. IEEE Robotics and Automation Letters, 2021, 6 (4): 7105- 7112.
doi: 10.1109/LRA.2021.3097258
|
18 |
ALEXA M , BEHR J , COHEN-OR D , et al. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 2003, 9 (1): 3- 15.
doi: 10.1109/TVCG.2003.1175093
|
19 |
MARTON Z C, RUSU R B, BEETZ M. On fast surface reconstruction methods for large and noisy point clouds[C]//Proceedings of International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2009: 3218-3223.
|
20 |
|
21 |
|
22 |
LOWE D G . Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
23 |
BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2006: 404-417.
|
24 |
RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2012: 2564-2571.
|
25 |
CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 778-792.
|
26 |
BIAN J W, LIN W Y, MATSUSHITA Y, et al. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 2828-2837.
|
27 |
STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2012: 573-580.
|