1 |
王忠杰. 结构光三维重建技术研究与应用[D]. 成都: 电子科技大学, 2022.
|
|
WANG Z J. Research and application of structured light 3D reconstruction technology[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese)
|
2 |
ISHIHARA K, KANERVISTO A, MIURA J, et al. Multi-task learning with attention for end-to-end autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2021: 2896-2905.
|
3 |
崔云轩, 刘桂华, 余东应, 等. 点线特征融合的激光雷达单目惯导SLAM系统. 计算机工程, 2022, 48(7): 254- 263.
URL
|
|
CUI Y X, LIU G H, YU D Y, et al. Lidar-mono-inertial SLAM system with fusion of point-line features. Computer Engineering, 2022, 48(7): 254- 263.
URL
|
4 |
ZENG A, SONG S R, NIEßNER M, et al. 3DMatch: learning local geometric descriptors from RGB-D reconstructions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 199-208.
|
5 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 945-953.
|
6 |
PUJOL-MIRÓ A, CASAS J R, RUIZ-HIDALGO J. Correspondence matching in unorganized 3D point clouds using convolutional neural networks. Image and Vision Computing, 2019, 83/84, 51- 60.
doi: 10.1016/j.imavis.2019.02.013
|
7 |
LI L, ZHU S Y, FU H B, et al. End-to-end learning local multi-view descriptors for 3D point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1916-1925.
|
8 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 77-85.
|
9 |
李建微, 占家旺. 三维点云配准方法研究进展. 中国图象图形学报, 2022, 27(2): 349- 367.
URL
|
|
LI J W, ZHAN J W. Review on 3D point cloud registration method. Journal of Image and Graphics, 2022, 27(2): 349- 367.
URL
|
10 |
AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: robust & efficient point cloud registration using PointNet[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 7156-7165.
|
11 |
LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 1981: 674-679.
|
12 |
WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 3522-3531.
|
13 |
WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38(5): 1- 12.
|
14 |
|
15 |
FISCHLER M, BOLLES R. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the Association for Computing Machinery, 1981, 24(6): 381- 395.
doi: 10.1145/358669.358692
|
16 |
DENG H W, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 195-205.
|
17 |
CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 8957-8965.
|
18 |
CHOY C, GWAK J, SAVARESE S. 4D spatio-temporal ConvNets: Minkowski convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3070-3079.
|
19 |
POIESI F, BOSCAINI D. Distinctive 3D local deep descriptors[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 5720-5727.
|
20 |
GOJCIC Z, ZHOU C F, WEGNER J D, et al. The perfect match: 3D point cloud matching with smoothed densities[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5540-5549.
|
21 |
BAI X Y, LUO Z X, ZHOU L, et al. D3Feat: joint learning of dense detection and description of 3D local features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6358-6366.
|
22 |
|
23 |
KAMOUSI P, LAZARD S, MAHESHWARI A, et al. Analysis of farthest point sampling for approximating geodesics in a graph. Computational Geometry, 2016, 57, 1- 7.
doi: 10.1016/j.comgeo.2016.05.005
|
24 |
FERNANDEZ-LABRADOR C, CHHATKULI A, PAUDEL D P, et al. Unsupervised learning of category-specific symmetric 3D keypoints from point sets[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 546-563.
|
25 |
RUSU R B, BLODOW N, BEETZ M. Fast Point Feature Histograms(FPFH) for 3D registration[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2009: 3212-3217.
|
26 |
DENG H W, BIRDAL T, ILIC S. PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 620-638.
|