1 |
刘丹, 马世霞. 融合超像素3D与Appearance特征的可行驶区域检测. 计算机工程, 2017, 43(7): 293- 297.
URL
|
|
LIU D, MA S X. Travelable area detection fusing superpixel 3D and Apperance feature. Computer Engineering, 2017, 43(7): 293- 297.
URL
|
2 |
张银, 任国全, 程子阳, 等. 三维激光雷达在无人车环境感知中的应用研究. 激光与光电子学进展, 2019, 56(13): 1- 11.
URL
|
|
ZHANG Y, REN G Q, CHENG Z Y, et al. Application research of there-dimensional lidar in unmanned vehicle environment perception. Laser & Optoelectronics Progress, 2019, 56(13): 1- 11.
URL
|
3 |
LI H, FU K, YAN M L, et al. Vehicle detection in remote sensing images using denoizing-based convolutional neural networks. Remote Sensing Letters, 2017, 8(3): 262- 270.
doi: 10.1080/2150704X.2016.1258127
|
4 |
李朝, 兰海, 魏宪. 基于注意力的毫米波-激光雷达融合目标检测. 计算机应用, 2021, 41(7): 2137- 2144.
URL
|
|
LI C, LAN H, WEI X. Attention-based object detection with millimeter wave radar-lidar fusion. Journal of Computer Applications, 2021, 41(7): 2137- 2144.
URL
|
5 |
王海, 刘明亮, 蔡英凤, 等. 基于激光雷达与毫米波雷达融合的车辆目标检测算法. 江苏大学学报(自然科学版), 2021, 42(4): 389- 394.
URL
|
|
WANG H, LIU M L, CAI Y F, et al. Vehicle target detection algorithm based on fusion of lidar and millimeter wave radar. Journal of Jiangsu University (Natural Science Edition), 2021, 42(4): 389- 394.
URL
|
6 |
赵亮, 胡杰, 刘汉, 等. 基于语义分割的深度学习激光点云三维目标检测. 中国激光, 2021, 48(17): 171- 183.
URL
|
|
ZHAO L, HU J, LIU H, et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds. Chinese Journal of Lasers, 2021, 48(17): 171- 183.
URL
|
7 |
ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4490-4499.
|
8 |
YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection. Sensors, 2018, 18(10): 3337.
|
9 |
LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12689-12697.
|
10 |
张冬冬, 郭杰, 陈阳. 基于深度学习的三维目标检测方法研究综述. 机电工程技术, 2022, 51(4): 5- 11.
URL
|
|
ZHANG D D, GUO J, CHEN Y. Review on deep learning to 3D object detection methods. Mechanical & Electrical Engineering Technology, 2022, 51(4): 5- 11.
URL
|
11 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 77-85.
|
12 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Washington D. C., USA: IEEE Press, 2017: 5105-5114.
|
13 |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset. International Journal of Robotics Research, 2013, 32(11): 1231- 1237.
|
14 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3354-3361.
|
15 |
YIN T W, ZHOU X Y, KRÄHENBÜHL P. Center-based 3D object detection and tracking[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 11779-11788.
|
16 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11618-11628.
|
17 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2443-2451.
|
18 |
ZHU X G, MA Y X, WANG T, et al. SSN: shape signature networks for multi-class object detection from point clouds[EB/OL]. [2022-10-05]. https://arxiv.org/abs/2004.02774.
|
19 |
何卓逊. 图像识别中数据增强方法的理解与改进[D]. 上海: 上海交通大学, 2020.
|
|
HE Z X. Understanding and improvement of data enhancement method in image recognition[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
|
20 |
杨川. 基于点云数据的3D目标检测技术研究[D]. 成都: 电子科技大学, 2021.
|
|
YANG C. Research on 3D object detection technology based on point cloud data[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
|
21 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 448-456.
|
22 |
|
23 |
李俊英. 深度卷积神经网络的旋转等变性研究[D]. 杭州: 浙江大学, 2019.
|
|
LI J Y. Research on rotational isomorphism of deep convolution neural networks[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
24 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
25 |
LIU Z, ZHAO X, HUANG T T, et al. TANet: robust 3D object detection from point clouds with triple attention. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11677- 11684.
|
26 |
SHI W J, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1708-1716.
|
27 |
YANG Z T, SUN Y N, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11037-11045.
|
28 |
ZHANG X S, WAN F, LIU C, et al. Learning to match anchors for visual object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3096- 3109.
|
29 |
SHI S S, WANG Z, SHI J P, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2647- 2664.
|