1 |
孟庆宽, 张漫, 叶剑华, 等. 基于轻量二阶段检测模型的自然环境多类蔬菜幼苗识别. 农业机械学报, 2021, 52(10): 282- 290.
doi: 10.6041/j.issn.1000-1298.2021.10.029
|
|
MENG Q K, ZHANG M, YE J H, et al. Identification of multiple vegetable seedlings based on two-stage lightweight detection model. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 282- 290.
doi: 10.6041/j.issn.1000-1298.2021.10.029
|
2 |
TONG J H, SHI H F, WU C Y, et al. Skewness correction and quality evaluation of plug seedling images based on Canny operator and Hough transform. Computers and Electronics in Agriculture, 2018, 155, 461- 472.
doi: 10.1016/j.compag.2018.10.035
|
3 |
刘芳, 刘玉坤, 张白. 基于D-YOLOv3检测网络的温室叶菜幼苗图像检测. 江苏农业学报, 2021, 37(5): 1262- 1269.
doi: 10.3969/j.issn.1000-4440.2021.05.022
|
|
LIU F, LIU Y K, ZHANG B. Image detection of leafy vegetable seedlings in greenhouse based on D-YOLOv3 detection network. Jiangsu Journal of Agricultural Sciences, 2021, 37(5): 1262- 1269.
doi: 10.3969/j.issn.1000-4440.2021.05.022
|
4 |
宋磊, 李嵘, 焦义涛, 等. 基于ResNeXt单目深度估计的幼苗植株高度测量方法. 农业工程学报, 2022, 38(3): 155- 163.
URL
|
|
SONG L, LI R, JIAO Y T, et al. Method for measuring seedling height based on ResNeXt monocular depth estimation. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 155- 163.
URL
|
5 |
邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展. 智慧农业(中英文), 2022, 4(1): 29- 46.
URL
|
|
SHAO M Y, ZHANG J H, FENG Q, et al. Research progress of deep learning in detection and recognition of plant leaf diseases. Smart Agriculture, 2022, 4(1): 29- 46.
URL
|
6 |
SHARIF M, KHAN M A, IQBAL Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture, 2018, 150, 220- 234.
doi: 10.1016/j.compag.2018.04.023
|
7 |
张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测. 农业工程学报, 2022, 38(1): 221- 229.
URL
|
|
ZHANG X H, JING M K, YUAN Y W, et al. Tomato seedling classification detection using improved YOLOv3-Tiny. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221- 229.
URL
|
8 |
TONG J, YU J, WU C, et al. Health information acquisition and position calculation of plug seedling in greenhouse seedling bed. Computers and Electronics in Agriculture, 2021, 185, 106146.
doi: 10.1016/j.compag.2021.106146
|
9 |
贺磊盈, 蔡丽苑, 武传宇. 基于机器视觉的幼苗自动嫁接参数提取. 农业工程学报, 2013, 29(24): 190- 195.
doi: 10.3969/j.issn.1002-6819.2013.24.025
|
|
HE L Y, CAI L Y, WU C Y. Vision-based parameters extraction of seedlings for grafting robot. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 190- 195.
doi: 10.3969/j.issn.1002-6819.2013.24.025
|
10 |
苗中华, 余孝有, 徐美红, 等. 基于图像处理多算法融合的杂草检测方法及试验. 智慧农业(中英文), 2020, 2(4): 103- 115.
URL
|
|
MIAO Z H, YU X Y, XU M H, et al. Automatic weed detection method based on fusion of multiple image processing algorithms. Smart Agriculture, 2020, 2(4): 103- 115.
URL
|
11 |
ZHANG G, WEN Y S, TAN Y Z, et al. Identification of cabbage seedling defects in a fast automatic transplanter based on the maxIOU algorithm. Agronomy, 2020, 10(1): 65- 72.
doi: 10.3390/agronomy10010065
|
12 |
王爱臣, 张敏, 刘青山, 等. 基于区域生长均值漂移聚类的苗期作物行提取方法. 农业工程学报, 2021, 37(19): 202- 210.
doi: 10.11975/j.issn.1002-6819.2021.19.023
|
|
WANG A C, ZHANG M, LIU Q S, et al. Seedling crop row extraction method based on regional growth and mean shift clustering. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 202- 210.
doi: 10.11975/j.issn.1002-6819.2021.19.023
|
13 |
施玮囡. 基于深度学习的植物工厂幼苗表型信息获取及定植装备研究[D]. 杭州: 浙江大学, 2019.
|
|
SHI W N. Research on phenotypic information acquisition and colonization equipment of plant factory seedlings based on deep learning[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
14 |
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割. 农业工程学报, 2021, 37(9): 211- 221.
URL
|
|
WANG C, WU X H, ZHANG Y Q, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211- 221.
URL
|
15 |
PATHAN M, PATEL N, YAGNIK H, et al. Artificial cognition for applications in smart agriculture: a comprehensive review. Artificial Intelligence in Agriculture, 2020, 4, 81- 95.
|
16 |
LI W, LIU C, CHEN M H, et al. A lightweight semantic segmentation model of Wucai seedlings based on attention mechanism. Photonics, 2022, 9(6): 393- 403.
|
17 |
GONG L, DU X F, ZHU K, et al. Pixel level segmentation of early-stage in-bag rice root for its architecture analysis. Computers and Electronics in Agriculture, 2021, 12(3): 186- 193.
|
18 |
娄路, 吕惠, 宋然. 基于多视角时间序列图像的植物叶片分割与特征提取. 农业机械学报, 2022, 53(1): 253- 260.
URL
|
|
LOU L, LÜ H, SONG R. Segmentation of plant leaves and features extraction based on muti-view and time-series image. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 253- 260.
URL
|
19 |
魏超宇, 韩文, 庞程, 等. 基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割. 江苏农业学报, 2021, 37(4): 990- 997.
URL
|
|
WEI C Y, HAN W, PANG C, et al. Image segmentation of Huanghua pear plants at fruit-thinning stage based on multi-scale feature fusion and dense connection network. Jiangsu Journal of Agricultural Sciences, 2021, 37(4): 990- 997.
URL
|
20 |
庄前伟, 王志明, 吴龙贻, 等. 基于改进SOLOv2的穴盘幼苗图像分割方法. 南京农业大学学报, 2023, 46(1): 200- 209.
URL
|
|
ZHUANG Q W, WANG Z M, WU L Y, et al. Image segmentation method of plug seedlings based on improved SOLOv2. Journal of Nanjing Agricultural University, 2023, 46(1): 200- 209.
URL
|
21 |
王祥, 舒军, 雷建军, 等. 基于改进YOLACT++的碧根果图像实例分割模型. 中南民族大学学报(自然科学版), 2022, 41(5): 613- 622.
URL
|
|
WANG X, SHU J, LEI J J, et al. Instance segmentation model of pecan image based on improved YOLACT++. Journal of South-Central University for Nationalities (Natural Science Edition), 2022, 41(5): 613- 622.
URL
|
22 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: real-time instance segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 9156-9165.
|
23 |
QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10208-10219.
|
24 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018, 11211: 833-851.
|
25 |
XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 5987-5995.
|
26 |
尚庆茂, 司军. 绿叶类蔬菜集约化育苗技术规程. 中国蔬菜, 2022,(9): 100- 105.
URL
|
|
SHANG Q M, SI J. Technical regulations for intensive seeding cultivation of green leafy vegetables. China Vegetables, 2022,(9): 100- 105.
URL
|
27 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
28 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834- 848.
|
29 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 9626-9635.
|
30 |
WANG X, KONG T, SHEN C, et al. Solo: segmenting objects by locations[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 649-665.
|
31 |
FANG Y X, YANG S S, WANG X G, et al. Instances as queries[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 6890-6899.
|