作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (12): 214-223. doi: 10.19678/j.issn.1000-3428.0066447

• 图形图像处理 • 上一篇    下一篇

基于YOLACT-RFX模型的穴盘甘蓝苗株分割算法

王楷1,2, 韩笑2,3,4, 朱华吉2,3,4, 缪祎晟2,3,4, 吴华瑞1,2,3,4,*   

  1. 1. 江苏大学 计算机科学与通信工程学院, 江苏 镇江 212013
    2. 国家农业信息化工程技术研究中心, 北京 100097
    3. 北京市农林科学院信息技术研究中心, 北京 100097
    4. 农业农村部数字乡村技术重点实验室, 北京 100097
  • 收稿日期:2022-12-05 出版日期:2023-12-15 发布日期:2023-03-22
  • 通讯作者: 吴华瑞
  • 作者简介:

    王楷(1997—),男,硕士研究生,主研方向为计算机视觉、农业信息化技术

    韩笑,助理研究员、硕士

    朱华吉,副研究员、博士

    缪祎晟,副研究员、博士

  • 基金资助:
    科技创新2030——“新一代人工智能”重大项目(2021ZD0113604); 财政部和农业农村部:国家现代农业产业技术体系资助项目(CARS-23-D07)

Segmentation Algorithm of Plug Cabbage Seedlings Based on YOLACT-RFX Model

Kai WANG1,2, Xiao HAN2,3,4, Huaji ZHU2,3,4, Yisheng MIAO2,3,4, Huarui WU1,2,3,4,*   

  1. 1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
    3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    4. Key Laboratory of Digital Village Technology, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
  • Received:2022-12-05 Online:2023-12-15 Published:2023-03-22
  • Contact: Huarui WU

摘要:

温室作物长势分析是近年来农业信息化领域中的研究热点,目前国内温室多用穴盘育苗的方式,其密集种植的特点和复杂的背景干扰给穴盘苗株的分割识别任务带来挑战。提出一种基于YOLACT-RFX的分割算法实现对穴盘内甘蓝苗株的高精度分割和苗期识别。通过引入递归特征金字塔结构加强甘蓝苗株叶片边缘处的特征提取能力,改进相邻穴盘孔位中相互干扰苗株的分割性能。在递归特征金字塔结构中利用空洞空间金字塔池化结构对尺寸和形状快速变化的甘蓝苗株进行特征识别。最后,融合ResNeXt主干网络提升算法精度,加快模型收敛速度。基于甘蓝苗自建数据集验证所提算法的有效性,实验结果表明,当交并比为0.5时,YOLACT-RFX算法的各类平均精度为84.4%,平均召回率为92.7%,相较于YOLACT算法分别提升了3.6%和3.9%。在同等情况下,分割效果优于MASK-RCNN、SOLO、QueryInst等算法。改进后的YOLACT-RFX算法可实现对不同生长期内甘蓝穴盘苗株的高精度分割,为温室自动化甘蓝苗期管理提供技术基础。

关键词: 分割算法, 甘蓝苗株, 苗期识别, 递归特征金字塔, 空洞空间金字塔池化

Abstract:

In recent years, greenhouse crop growth analysis has become a research focal point in the agricultural informatization field. Currently, the seedling cultivation method with plug trays is predominantly utilized in greenhouses. However, dense planting characteristics and complex background interference introduces challenges for seedling identification and segmentation. To address these challenges, a segmentation algorithm based on YOLACT-RFX is proposed in this study, to effectively achieve high precision segmentation and seedling stage identification of cabbage seedlings in plug trays. The Recursive Feature Pyramid(RFP) structure was introduced to enhance the feature extraction capability at the cabbage seedling leaf edge, and segmentation performance of seedlings with mutual interference in adjacent hole positions was improved. The Atrous Spatial Pyramid Pooling(ASPP) structure was used in the RFP structure to identify cabbage seedling features with rapid changes in size and shape. Subsequently, the ResNeXt backbone network was fused to further improve the algorithm's accuracy and to accelerate model convergence. Based on a field-collected cabbage seedling data set, experimental results demonstrated that when the IoU ratio was 0.5, the average mean precision of the proposed YOLACT-RFX algorithm was 84.4% and the average recall rate was 92.2%. Compared to the original YOLACT algorithm, the YOLACT-RFX method was 3.6 and 3.9% more efficient. Under the same condition, the segmentation results outperformed the MASK-RCNN, SOLO and QueryInst algorithms. Finally, it was confirmed that the proposed YOLACT-RFX algorithm achieved high-precision cabbage seedling segmentation, thus, laying the foundation for automatic cabbage seedling management in greenhouses.

Key words: segmentation algorithm, cabbage seedlings, seedling stage identification, Recursive Feature Pyramid(RFP), Atrous Spatial Pyramid Pooling(ASPP)