作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (1): 287-294. doi: 10.19678/j.issn.1000-3428.0063575

• 开发研究与工程应用 • 上一篇    下一篇

基于反馈机制与空洞卷积的道路小目标检测网络

窦允冲1,3, 侯进1,3, 曾雷鸣2,3, 陈子锐1,3   

  1. 1. 西南交通大学 信息科学与技术学院 智能感知智慧运维实验室, 成都 611756;
    2. 西南交通大学 计算机与人工智能学院, 成都 611756;
    3. 西南交通大学 综合交通大数据应用技术国家工程实验室, 成都 611756
  • 收稿日期:2021-12-20 修回日期:2022-02-24 发布日期:2022-03-21
  • 作者简介:窦允冲(1996-),男,硕士研究生,主研方向为目标检测、信号与信息处理;侯进(通信作者),副教授、博士;曾雷鸣、陈子锐,硕士研究生。
  • 基金资助:
    四川省科技计划项目(2020SYSY0016)。

Road Small Target Detection Network Based on Feedback Mechanism and Dilated Convolution

DOU Yunchong1,3, HOU Jin1,3, ZENG Leiming2,3, CHEN Zirui1,3   

  1. 1. Laboratory of Intelligent Preception and Smart Operation & Maintenance, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;
    2. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China;
    3. National Engineering Laboratory of Comprehensive Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2021-12-20 Revised:2022-02-24 Published:2022-03-21

摘要: 随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。

关键词: 小目标检测, YOLOv4算法, 空洞卷积, 反馈机制, 递归特征金字塔

Abstract: With the development of Convolutional Neural Network(CNN) and feature pyramids, target detection has made breakthroughs in large and medium targets, but there are missed detections and low detection accuracies for small targets.Aiming at the reasons for less information of small targets in the picture and the difference in the size of small targets from that of large targets, this study proposes the YOLOv4-RF algorithm based on the YOLOv4 algorithm and further enhances the detection performance of the model for small targets.This study uses dilated convolution to replace the pooled pyramid of the neck in YOLOv4 to reduce semantic loss and obtain a larger receptive field in the deeper part of the network.Moreover, the backbone network is lightweight and a feedback mechanism from the feature pyramid to the backbone network is added.The features from shallow and deep fusion are processed again, which retains more feature information of small targets and improves the effectiveness of the network classification and positioning.Finally, because the small target object belongs to the difficult detection sample, the focal loss function is introduced to increase the weight loss of the difficult sample and form the YOLOv4-RF algorithm.The experimental data on the KITTI dataset show that the detection accuracy of YOLOv4-RF in each category is higher than that of YOLOv4, and the Mean Average Precision(MAP@0.5) is improved by 1.4% by reducing the model by 138 MB.

Key words: small target detection, YOLOv4 algorithm, dilated convolution, feedback mechanism, recursive feature pyramid

中图分类号: