[1] 刘颖, 刘红燕, 范九伦, 等.基于深度学习的小目标检测研究与应用综述[J].电子学报, 2020, 48(3):590-601. LIU Y, LIU H Y, FAN J L, et al.A survey of research and application of small object detection based on deep learning[J].Acta Electronica Sinica, 2020, 48(3):590-601.(in Chinese) [2] GHIASI G, LIN T Y, LE Q V.NAS-FPN:learning scalable feature pyramid architecture for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:7029-7038. [3] LI X, LAI T, WANG S.Weighted feature pyramid networks for object detection[C]//Proceedings of ISPA/BDCloud/SustainCom/SocialCom 2019.Washington D.C., USA:IEEE Press, 2019:1500-1504. [4] SINGH B, DAVIS L S.An analysis of scale invariance in object detection-SNIP[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3578-3587. [5] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [6] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [7] LI X, WANG W H, HU X L, et al.Generalized focal loss V2:learning reliable localization quality estimation for dense object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:11627-11636. [8] YANG X, YAN J C, FENG Z M, et al.R3Det:refined single-stage detector with feature refinement for rotating object[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4):3163-3171. [9] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [10] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [11] 文韬, 周稻祥, 李明.Mask R-CNN中特征不平衡问题的全局信息融合方法[J].计算机工程, 2021, 47(3):256-260, 268. WEN T, ZHOU D X, LI M.Global information fusion method for feature imbalance problem in Mask R-CNN[J]. Computer Engineering, 2021, 47(3):256-260, 268.(in Chinese) [12] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6154-6162. [13] CAO J L, CHOLAKKAL H, ANWER R M, et al.D2Det:towards high quality object detection and instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11482-11491. [14] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [15] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [16] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-12-10].https://arxiv.org/abs/1804.02767. [17] LIU W, ANGUELOV D, ERHAN D.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [18] GE Z, LIU S T, WANG F, et al.YOLOX:exceeding YOLO series in 2021[EB/OL].[2021-12-10].https://arxiv.org/abs/2107.08430. [19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-12-10].https://arxiv.org/abs/2004.10934. [20] WANG C Y, LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:1571-1580. [21] HE K, ZHANG X, REN S.Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:346-361. [22] QIAO S Y, CHEN L C, YUILLE A.DetectoRS:detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:10213-10218. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:770-778. [24] XIE S N, GIRSHICK R, DOLLÁR P, et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5987-5995. [25] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [26] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [27] GEIGER A, LENZ P, URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:3354-3361. |