1 |
|
|
|
2 |
蒋雅君, 陶磊, 刘莎, 等. 运营公路隧道结构预防性养护经济性评价方法探讨. 隧道建设, 2020, 40 (S2): 332- 339.
URL
|
|
JIANG Y J, TAO L, LIU S, et al. Discussion on economic evaluation method of preventive maintenance of operating highway tunnel structure. Tunnel Construction, 2020, 40 (S2): 332- 339.
URL
|
3 |
刘文斌, 王世伟, 秦之富. 公路隧道经常检查及养护工作探讨. 隧道建设, 2019, 39 (S1): 486- 491.
URL
|
|
LIU W B, WANG S W, QIN Z F. Discussion on regular inspection and maintenance of highway tunnels. Tunnel Construction, 2019, 39 (S1): 486- 491.
URL
|
4 |
瞿中, 王彩云. 基于注意力机制和轻量级空洞卷积的混凝土路面裂缝检测. 计算机科学, 2023, 50 (2): 192- 196.
URL
|
|
QU Z, WANG C Y. Crack detection of concrete pavement based on attention mechanism and lightweight dilated convolution. Computer Science, 2023, 50 (2): 192- 196.
URL
|
5 |
于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型. 计算机工程, 2023, 49 (6): 265- 273.
URL
|
|
YU H Y, JING P, ZHANG W T, et al. Improved U-Net model for road crack detection based on residual and attention mechanism. Computer Engineering, 2023, 49 (6): 265- 273.
URL
|
6 |
ZHANG Q Y, BARRI K, BABANAJAD S K, et al. Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering, 2021, 7 (12): 1786- 1796.
doi: 10.1016/j.eng.2020.07.026
|
7 |
ZHANG J, DUAN F Q, ZHOU M Q, et al. Stable and realistic crack pattern generation using a cracking node method. Frontiers of Computer Science, 2018, 12 (4): 777- 797.
doi: 10.1007/s11704-016-5511-9
|
8 |
LIU S G, CHEN D. Computer simulation of batik printing patterns with cracks. Textile Research Journal, 2015, 85 (18): 1972- 1984.
doi: 10.1177/0040517514561919
|
9 |
ALI R, CHUAH J H, ABU TALIP M S, et al. Automatic pixel-level crack segmentation in images using fully convolutional neural network based on residual blocks and pixel local weights. Engineering Applications of Artificial Intelligence, 2021, 104, 104391.
doi: 10.1016/j.engappai.2021.104391
|
10 |
ALI R, CHUAH J H, TALIP M S A, et al. Structural crack detection using deep convolutional neural networks. Automation in Construction, 2022, 133, 103989.
doi: 10.1016/j.autcon.2021.103989
|
11 |
ZHANG Y, YUEN K V. Crack detection using fusion features-based broad learning system and image processing. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (12): 1568- 1584.
doi: 10.1111/mice.12753
|
12 |
张振海, 贾争满, 季坤. 基于改进的Otsu法的地铁隧道裂缝识别方法研究. 重庆交通大学学报(自然科学版), 2022, 41 (1): 84- 90.
URL
|
|
ZHANG Z H, JIA Z M, JI K. Crack identification method of subway tunnel based on improved Otsu method. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41 (1): 84- 90.
URL
|
13 |
王建锋, 邱雨, 刘水宙. 基于图像补偿的隧道衬砌裂缝检测方法. 浙江大学学报(工学版), 2022, 56 (7): 1404- 1415.
URL
|
|
WANG J F, QIU Y, LIU S Z. Tunnel lining crack detection method based on image compensation. Journal of Zhejiang University(Engineering Science), 2022, 56 (7): 1404- 1415.
URL
|
14 |
ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2016: 3708-3712.
|
15 |
彭雨诺, 刘敏, 万智, 等. 基于改进YOLO的双网络桥梁表观病害快速检测算法. 自动化学报, 2022, 48 (4): 1018- 1032.
URL
|
|
PENG Y N, LIU M, WAN Z, et al. A dual deep network based on the improved YOLO for fast bridge surface defect detection. Acta Automatica Sinica, 2022, 48 (4): 1018- 1032.
URL
|
16 |
周颖, 刘彤. 基于计算机视觉的混凝土裂缝识别. 同济大学学报(自然科学版), 2019, 47 (9): 1277- 1285.
URL
|
|
ZHOU Y, LIU T. Computer vision-based crack detection and measurement on concrete structure. Journal of Tongji University(Natural Science), 2019, 47 (9): 1277- 1285.
URL
|
17 |
NISHIYAMA S, MINAKATA N, KIKUCHI T, et al. Improved digital photogrammetry technique for crack monitoring. Advanced Engineering Informatics, 2015, 29 (4): 851- 858.
|
18 |
刘娟红, 孟翔, 段品佳, 等. 基于MATLAB的混凝土裂缝宽度计算方法研究. 材料导报, 2022, 36 (6): 84- 89.
URL
|
|
LIU J H, MENG X, DUAN P J, et al. Study on calculation method of concrete crack width based on MATLAB. Materials Reports, 2022, 36 (6): 84- 89.
URL
|
19 |
朱磊, 李东彪, 闫星志, 等. 基于改进Mask R-CNN深度学习算法的隧道裂缝智能检测方法. 图学学报, 2023, 44 (1): 177- 183.
URL
|
|
ZHU L, LI D B, YAN X Z, et al. Intelligent detection method of tunnel cracks based on improved Mask R-CNN deep learning algorithm. Journal of Graphics, 2023, 44 (1): 177- 183.
URL
|
20 |
ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 1984, 27 (3): 236- 239.
|
21 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
22 |
CRANE K, WEISCHEDEL C, WARDETZKY M. The heat method for distance computation. Communications of the ACM, 2017, 60 (11): 90- 99.
|
23 |
SETHIAN J A, VLADIMIRSKY A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (11): 5699- 5703.
|
24 |
ABEYWICKRAMA T, CHEEMA M A, TANIAR D. K-nearest neighbors on road networks. Proceedings of the VLDB Endowment, 2016, 9 (6): 492- 503.
|
25 |
SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (12): 3434- 3445.
|
26 |
NASERI M, HEIDARI S, GHEIBI R, et al. A novel quantum binary images thinning algorithm: a quantum version of the Hilditch's algorithm. Optik, 2017, 131, 678- 686.
|
27 |
WANG P F, ZHAO F, MA S W. Skeleton extraction method based on distance transform[C]//Proceedings of the 11th International Conference on Electronic Measurement & Instruments. Washington D. C., USA: IEEE Press, 2014: 519-523.
|
28 |
苏辰耀, 刘向阳. 基于热方法的骨架提取算法. 计算机与现代化, 2022, (3): 59- 63.
URL
|
|
SU C Y, LIU X Y. Skeleton extraction algorithm based on thermal method. Computer and Modernization, 2022, (3): 59- 63.
URL
|