1 |
ZIMEK A, SCHUBERT E, KRIEGEL H P. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 2012, 5 (5): 363- 387.
doi: 10.1002/sam.11161
|
2 |
|
3 |
BO Z, QI S, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2018: 357-368.
|
4 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[EB/OL]. [2022-10-10]. https://arxiv.org/abs/1911.02357.pdf.
|
5 |
BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. [2022-10-10]. https://arxiv.org/abs/1807.02011.pdf.
|
6 |
TANG T W, KUO W H, LAN J H, et al. Anomaly detection neural network with dual auto-encoders GAN and its industrial inspection applications. Sensors, 2020, 20 (12): 3336.
|
7 |
COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7915-7922.
|
8 |
AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]//Proceedings of ACCVʼ18. Berlin, Germany: Springer, 2019: 622-637.
|
9 |
AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2019: 1-8.
|
10 |
冯志涛. 基于生成对抗网络的表面缺陷异常检测[D]. 大连: 大连理工大学, 2021.
|
|
FENG Z T. Anomaly detection of surface defects based on generative countermeasure network[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
|
11 |
HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 733-742.
|
12 |
ZHAO Y R, DENG B, SHEN C, et al. Spatio-temporal AutoEncoder for video anomaly detection[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York, USA: ACM Press, 2017: 1933-1941.
|
13 |
GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1705-1714.
|
14 |
PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 14360-14369.
|
15 |
李建伏, 王思博, 宋国平. 基于出行偏好和路径长度的路径规划方法. 吉林大学学报(理学版), 2021, 59 (1): 107- 114.
URL
|
|
LI J F, WANG S B, SONG G P. Path planning method based on routing preference and path length. Journal of Jilin University(Science Edition), 2021, 59 (1): 107- 114.
URL
|
16 |
HOU J L, ZHANG Y Y, ZHONG Q Y, et al. Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 8771-8780.
|
17 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015.
|
18 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
|
19 |
|
20 |
SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis. New York, USA: ACM Press, 2014: 153-160.
|
21 |
SCHÖLKOPF B, PLATT J, HOFMANN T. Greedy layer-wise training of deep networks[C]//Proceedings of NIPSʼ07. Cambridge, USA: MIT Press, 2007: 153-160.
|
22 |
SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3379-3388.
|
23 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2022-10-10]. https://arxiv.org/abs/1511.06434.
|
24 |
|
25 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9584-9592.
|
26 |
|