作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (12): 304-310. doi: 10.19678/j.issn.1000-3428.0066232

• 开发研究与工程应用 • 上一篇    下一篇

基于块金字塔记忆模块的无监督异常检测

鄢宁1, 李岳阳1,*, 罗海驰2   

  1. 1. 江南大学 人工智能与计算机学院, 江苏 无锡 214122
    2. 江南大学 物联网工程学院, 江苏 无锡 214122
  • 收稿日期:2022-11-10 出版日期:2023-12-15 发布日期:2023-12-14
  • 通讯作者: 李岳阳
  • 作者简介:

    鄢宁(1997—),女,硕士研究生,主研方向为计算机视觉

    罗海驰,讲师、硕士

Unsupervised Anomaly Detection Based on Block Pyramid Memory Module

Ning YAN1, Yueyang LI1,*, Haichi LUO2   

  1. 1. School of Artificial Intelligence and Computer, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2022-11-10 Online:2023-12-15 Published:2023-12-14
  • Contact: Yueyang LI

摘要:

基于重建的无监督异常检测方法由于不需要异常样本和预训练模型,被广泛地应用到异常检测任务中。然而,在实际应用中由于卷积神经网络的泛化性,模型能够有效地重建异常,使得难以通过重建误差来检测异常。现有方法通过使用合适的记忆块存储正常数据,将异常特征转化为正常特征,从而抑制异常重建,但不同的异常区域差异较大,记忆块尺寸的选择不当会导致重建模糊和重建异常等问题。考虑到这类方法在重建模型中的优势,提出一种基于改进记忆块存储的无监督异常检测方法。通过增加块金字塔记忆模块来适应不同面积大小的异常,并且不同尺度的块记忆模块通过读取、聚合得到多特征图融合的输出特征图,能够最大限度地保留正常样本的特征信息,增强特征信息的存储与表达,从而更好地重建正常数据。同时,为了增强重建清晰度,减少重建异常,在重建网络中增加skip connection结构。最后引入SSIM损失函数,通过亮度、对比度和结构3个维度来增强图像重建效果,并作为异常判定指标的组成部分,提高异常检测的精度。实验结果表明,相较于原始基于块存储和读取的重建模型,该方法平均AUC高出1.5%,具有更优的检测效果。

关键词: 无监督学习, 异常检测, 记忆模块, 自编码器, 重建模型

Abstract:

Unsupervised anomaly detection based on reconstruction is widely used because it does not require additional anomaly samples and pretrained models during training. However, in practical applications, the model can effectively reconstruct anomalies because of the generalization of convolutional neural networks, making it difficult to detect anomalies based on reconstruction errors. Existing methods suppress abnormal reconstruction by using appropriate memory blocks to store normal data and transform abnormal features into normal features. However, different abnormal areas can vary significantly, and improper selection of the memory block size may result in problems of fuzzy and abnormal reconstruction. Considering the advantages of these methods in the reconstruction model, an unsupervised anomaly detection method based on improved memory block storage is proposed. This involved adding a block pyramid memory module to adapt to anomalies of different area sizes. Block memory modules of different scales are employed to obtain multiple feature maps through reading and aggregation and subsequently obtained the output feature map after fusion. This approach can retain the feature information of normal samples to the maximum extent and enhance the storage and expression of feature information to better reconstruct normal data. Simultaneously, to enhance the clarity of the reconstruction and reduce reconstruction anomalies, a skip connection structure is added to the reconstruction network.Finally, the SSIM loss function is introduced to enhance the image reconstruction effect through the three dimensions of brightness, contrast, and structure. It also served as a component of the anomaly determination index, improving the accuracy of anomaly detection. The experimental results indicate that this method achieves an average AUC that is 1.5% higher than that of the original reconstructed model based on memory block storage and reading and has a better detection effect.

Key words: unsupervised learning, anomaly detection, memory module, autoencoder, reconstruction model