1 |
韩鹏, 李宇航, 揭晓蒙. 国际全球海洋环流预报系统的现状与展望. 海洋预报, 2020, 37 (3): 98- 105.
URL
|
|
HAN P, LI Y H, JIE X M. The status and prospect of global ocean circulation forecasting system in foreign countries. Marine Forecasts, 2020, 37 (3): 98- 105.
URL
|
2 |
GUNTHER T. Visibility, topology, and inertia: new methods in flow visualization. IEEE Computer Graphics and Applications, 2020, 40 (2): 103- 111.
doi: 10.1109/MCG.2019.2959568
|
3 |
CHEN C S, BEARDSLEY R, COWLES G. An unstructured grid, Finite-Volume Coastal Ocean Model(FVCOM) system. Oceanography, 2006, 19 (1): 78- 89.
doi: 10.5670/oceanog.2006.92
|
4 |
李忠伟, 徐斌, 李永, 等. 基于非结构化三角网格的海洋流场可视化. 图学学报, 2022, 43 (3): 486- 495.
doi: 10.11996/JG.j.2095-302X.2022030486
|
|
LI Z W, XU B, LI Y, et al. Visualization of ocean flow field based on unstructured triangular mesh. Journal of Graphics, 2022, 43 (3): 486- 495.
doi: 10.11996/JG.j.2095-302X.2022030486
|
5 |
MCLOUGHLIN T, LARAMEE R S, PEIKERT R, et al. Over two decades of integration-based, geometric flow visualization. Computer Graphics Forum, 2010, 29 (6): 1807- 1829.
doi: 10.1111/j.1467-8659.2010.01650.x
|
6 |
MAX N, CORREA C, MUELDER C, et al. Flow visualization in science and mathematics. Journal of Physics: Conference Series, 2009, 180, 012087.
|
7 |
CORREA C D, HERO R, MA K L. A comparison of gradient estimation methods for volume rendering on unstructured meshes. IEEE Transactions on Visualization and Computer Graphics, 2011, 17 (3): 305- 319.
doi: 10.1109/TVCG.2009.105
|
8 |
马千里, 李思昆, 白晓征, 等. CFD非结构化网格格心格式数据高质量体绘制方法. 计算机学报, 2011, 34 (3): 3508- 3516.
doi: 10.3724/SP.J.1016.2011.00508
|
|
MA Q L, LI S K, BAI X Z, et al. High-quality volume rendering of unstructured-grid cell-centered data in CFD. Chinese Journal of Computers, 2011, 34 (3): 3508- 3516.
doi: 10.3724/SP.J.1016.2011.00508
|
9 |
HELMAN J L, HESSELINK L. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 1991, 11 (3): 36- 46.
doi: 10.1016/j.cageo.2010.07.006
|
10 |
LAVIN Y, BATRA R, HESSELINK L. Feature comparisons of vector fields using earth mover's distance[C]//Proceedings of VIS'98. Washington D. C., USA: IEEE Press, 1998: 103-109.
|
11 |
吴晓莉, 史美萍, 贺汉根. 基于特征提取的三维流线分布算法. 国防科技大学学报, 2008, 30 (2): 102- 106.
URL
|
|
WU X L, SHI M P, HE H G. Feature extracting based 3D streamline placement algorithm. Journal of National University of Defense Technology, 2008, 30 (2): 102- 106.
URL
|
12 |
季民, 任静, 张立国, 等. 面向拓扑分析的海洋流场临界点提取算法研究. 海洋学报, 2021, 43 (5): 135- 144.
doi: 10.7666/d.y1503149
|
|
JI M, REN J, ZHANG L G, et al. Research on extraction algorithm of critical points of ocean flow field for topological analysis. Haiyang Xuebao, 2021, 43 (5): 135- 144.
doi: 10.7666/d.y1503149
|
13 |
BHATIA H, GYULASSY A, WANG H, et al. Robust detection of singularities in vector fields[M]//HEGE H C, HOFFMAN D, JOHNSON C R, et al. Mathematics and visualization. Berlin, Germany: Springer, 2014: 3-18.
|
14 |
WANG W T, WANG W K, LI S K. Detection and classification of critical points in piecewise linear vector fields. Journal of Visualization, 2018, 21 (1): 147- 161.
doi: 10.1007/s12650-017-0438-2
|
15 |
SANE S, BUJACK R, GARTH C, et al. A survey of seed placement and streamline selection techniques. Computer Graphics Forum, 2020, 39 (3): 785- 809.
doi: 10.1111/cgf.14036
|
16 |
SHI L Y, LARAMEE R S, CHEN G N. Integral curve clustering and simplification for flow visualization: a comparative evaluation. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (3): 1967- 1985.
doi: 10.1016/j.ejrad.2009.09.023
|
17 |
SHEN L M, WANG W K. Streamline seeding strategy based on quantitative evaluation[C]//Proceedings of the 11th International Conference on Software and Computer Applications. New York, USA: ACM Press, 2022: 165-172.
|
18 |
DOVEY D. Vector plots for irregular grids[C]//Proceedings of VIS'95. Washington D. C., USA: IEEE Press, 1995: 248-253.
|
19 |
TREINISH L A. Multi-resolution visualization techniques for nested weather models[C]//Proceedings of VIS'00. Washington D. C., USA: IEEE Press, IEEE Press, 2000: 513-516.
|
20 |
VERMA V, KAO D, PANG A. PLIC: bridging the gap between streamlines and LIC[C]//Proceedings of VIS'99. Washington D. C., USA: IEEE Press, 1999: 341-541.
|
21 |
XU L J, LEE T Y, SHEN H W. An information-theoretic framework for flow visualization. IEEE Transactions on Visualization and Computer Graphics, 2010, 16 (6): 1216- 1224.
doi: 10.1111/cgf.12128
|
22 |
巴振宇, 单桂华, 刘俊, 等. 一种基于特征信息种子点选取的多层次流线可视化. 计算机辅助设计与图形学学报, 2016, 28 (1): 32- 40.
doi: 10.3969/j.issn.1003-9775.2016.01.005
|
|
BA Z Y, SHAN G H, LIU J, et al. A feature-based seeding method for multi-level flow visualization. Journal of Computer-Aided Design and Computer Graphics, 2016, 28 (1): 32- 40.
doi: 10.3969/j.issn.1003-9775.2016.01.005
|
23 |
黄冬梅, 杜艳玲, 张律文. 基于信息熵种子点选取的流线可视化. 计算机工程与科学, 2018, 40 (3): 411- 417.
URL
|
|
HUANG D M, DU Y L, ZHANG L W. Two information entropy-based seeding methods for 3D flow visualization. Computer Engineering and Science, 2018, 40 (3): 411- 417.
URL
|
24 |
DU X F, LIU H L, TSENG H W. Adaptive method to locate seed points based on information entropy and quadtree. Sensors and Materials, 2021, 33 (2): 789- 804.
doi: 10.18494/SAM.2021.3047
|
25 |
TRICOCHE X, SCHEUERMANN G, HAGEN H. Continuous topology simplification of planar vector fields[C]//Proceedings of VIS'01. Washington D. C., USA: IEEE Press, 2001: 159-166.
|
26 |
FERRARI S, HU Y P. Using maxima score for the extraction and visualization of fluid flow structures[C]//Proceedings of the 11th International Conference on Computer Graphics, Imaging and Visualization. Washington D. C., USA: IEEE Press, 2014: 95-100.
|