1 |
LIU T, WANG X N, LI L, et al. Review—electrochemical NOx gas sensors based on stabilized zirconia. Journal of the Electrochemical Society, 2017, 164 (13): B610.
doi: 10.1149/2.0501713jes
|
2 |
HALLEY S, RAMAIYAN K P, TSUI L, et al. A review of zirconia oxygen, NOx, and mixed potential gas sensors— history and current trends. Sensors and Actuators B: Chemical, 2022, 370, 132363.
doi: 10.1016/j.snb.2022.132363
|
3 |
邹海平. 满足国六排放柴油机SCR系统控制策略研究与验证[D]. 镇江: 江苏大学, 2021.
|
|
ZOU H P. Research and verification of SCR system control strategy for diesel engine meeting national six emission requirements[D]. Zhenjiang: Jiangsu University, 2021. (in Chinese)
|
4 |
张琳, 卢中轩, 李腾腾, 等. NOx传感器测量天然气发动机NOx排放的试验研究. 小型内燃机与车辆技术, 2021, 50 (6): 48- 52.
URL
|
|
ZHANG L, LU Z X, LI T T, et al. Experimental study on measurement of NOx emission from natural gas engine with a NOx sensor. Small Internal Combustion Engine and Motorcycle, 2021, 50 (6): 48- 52.
URL
|
5 |
MIURA N, SATO T, ANGGRAINI S A, et al. A review of mixed-potential type zirconia-based gas sensors. Ionics, 2014, 20 (7): 901- 925.
doi: 10.1007/s11581-014-1140-1
|
6 |
李怡. 车载氮氧传感器控制系统研究及实现[D]. 武汉: 华中科技大学, 2021.
|
|
LI Y. Research and implementation of control system for vehicle-mounted NOx sensor[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese)
|
7 |
WANG J X, CUI J D, ZHANG X, et al. Effect of sintering temperature on adhesion property and electrochemical activity of Pt/YSZ electrode. Materials, 2022, 15 (10): 3471.
doi: 10.3390/ma15103471
|
8 |
ZHENG Y J, SAUTER U, MOOS R. Investigation of oxygen transport paths in geometrically defined thick-film composite Pt electrodes on YSZ. Journal of the Electrochemical Society, 2016, 163 (8): F877.
doi: 10.1149/2.1081608jes
|
9 |
SCIAZKO A, KOMATSU Y, SHIMURA T, et al. Segmentation of solid oxide cell electrodes by patch convolutional neural network. Journal of the Electrochemical Society, 2021, 168 (4): 044504.
doi: 10.1149/1945-7111/abef84
|
10 |
TONG Z, GAO J, WANG Z, et al. A new method for CF morphology distribution evaluation and CFRC property prediction using cascade deep learning. Construction and Building Materials, 2019, 222, 829- 838.
doi: 10.1016/j.conbuildmat.2019.06.160
|
11 |
LIU K, OSTADHASSAN M. Multi-scale fractal analysis of pores in shale rocks. Journal of Applied Geophysics, 2017, 140, 1- 10.
doi: 10.1016/j.jappgeo.2017.02.028
|
12 |
LI X, LIU Z, CUI S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 735- 753.
doi: 10.1016/j.cma.2019.01.005
|
13 |
YANG X J, WANG J M, ZHU C, et al. Effect of wetting and drying cycles on microstructure of rock based on SEM. Environmental Earth Sciences, 2019, 78 (6): 183.
doi: 10.1007/s12665-019-8191-6
|
14 |
|
15 |
KIM D, LEE S, HONG W, et al. Image segmentation for FIB-SEM serial sectioning of a Si/C-graphite composite anode microstructure based on preprocessing and global thresholding. Microscopy and Microanalysis, 2019, 25 (5): 1139- 1154.
doi: 10.1017/S1431927619014752
|
16 |
YANG X F, FU X W, LI X. Adaptive clustering SOFC image segmentation based on particle swarm optimization. Journal of Physics: Conference Series, 2019, 1229, 012020.
doi: 10.1088/1742-6596/1229/1/012020
|
17 |
CHALUSIAK M, NAWROT W, BUCHANIEC S, et al. Swarm intelligence-based methodology for scanning electron microscope image segmentation of solid oxide fuel cell anode. Energies, 2021, 14 (11): 3055.
doi: 10.3390/en14113055
|
18 |
HWANG H, CHOI S M, OH J, et al. Integrated application of semantic segmentation-assisted deep learning to quantitative multi-phased microstructural analysis in composite materials: case study of cathode composite materials of solid oxide fuel cells. Journal of Power Sources, 2020, 471, 228458.
doi: 10.1016/j.jpowsour.2020.228458
|
19 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. [2023-02-05]. https://arxiv.org/abs/1802.02611.
|
20 |
MARQUES V G, DA SILVA L R D, CARVALHO B M, et al. Deep learning-based pore segmentation of thin rock sections for aquifer characterization using color space reduction[C]//Proceedings of 2019 International Conference on Systems, Signals and Image Processing. Washington D. C., USA: IEEE Press, 2019: 235-240.
|
21 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
22 |
YAMAGISHI R, SCIAZKO A, OUYANG Z F, et al. Super-resolved in-operando observation of SOFC pattern electrodes. ECS Transactions, 2021, 103 (1): 2087- 2098.
doi: 10.1149/10301.2087ecst
|
23 |
CHAUDHARI S, MITHAL V, POLATKAN G, et al. An attentive survey of attention models. ACM Transactions on Intelligent Systems and Technology, 2021, 12 (5): 1- 32.
doi: 10.48550/arXiv.1904.02874
|
24 |
|
25 |
|
26 |
|
27 |
ZHU Z, XU M D, BAI S, et al. Asymmetric non-local neural networks for semantic segmentation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 593-602.
|
28 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3146-3154.
|
29 |
|
30 |
BYRA M, JAROSIK P, SZUBERT A, et al. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 2020, 61, 102027.
doi: 10.1016/j.bspc.2020.102027
|
31 |
JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of 2020 IEEE International Symposium on Computer-Based Medical Systems. Washington D. C., USA: IEEE Press, 2020: 558-564.
|
32 |
GUO C L, SZEMENYEI M, YI Y G, et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation[C]//Proceedings of 2020 International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1236-1242.
|
33 |
|