1 |
VAROL G, CEYLAN D, RUSSELL B, et al. BodyNet: volumetric inference of 3D human body shapes. Berlin, Germany: Springer, 2018.
|
2 |
万云翀, 宋云鹏, 刘利刚. 基于体素联合坐标的单人三维姿态估计. 计算机辅助设计与图形学学报, 2022, 34(9): 1411- 1419.
URL
|
|
WAN Y C, SONG Y P, LIU L G. 3D human pose estimation based on volumetric joint coordinates. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(9): 1411- 1419.
URL
|
3 |
KOLOTOUROS N, PAVLAKOS G, DANIILIDIS K. Convolutional mesh regression for single-image human shape reconstruction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4496-4505.
|
4 |
LIN K, WANG L J, LIU Z C. End-to-end human pose and mesh reconstruction with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1954-1963.
|
5 |
ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people. ACM Transactions on Graphics, 2005, 24(3): 408- 416.
doi: 10.1145/1073204.1073207
|
6 |
JAIN A, THORMÄHLEN T, SEIDEL H P, et al. MovieReshape: tracking and reshaping of humans in videos. ACM Transactions on Graphics, 2010, 29(6): 148.
|
7 |
TSOLI A, MAHMOOD N, BLACK M J. Breathing life into shape. ACM Transactions on Graphics, 2015, 33(4): 92- 100.
|
8 |
LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model. ACM Transactions on Graphics, 2015, 34(6): 248.
|
9 |
PAVLAKOS G, CHOUTAS V, GHORBANI N, et al. Expressive body capture: 3D hands, face, and body from a single image[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 10975-10985.
|
10 |
曾志超, 李桂清, 邹歆仪, 等. 三维人体模型姿态与形状重构. 计算机辅助设计与图形学学报, 2019, 31(9): 1485- 1493.
URL
|
|
ZENG Z C, LI G Q, ZOU X Y, et al. Human model pose and shape reconstruction. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1485- 1493.
URL
|
11 |
李健, 杨镖镖, 张皓若. 基于SMPL模型的人体姿态估计. 计算机仿真, 2021, 38(3): 292-297, 486.
doi: 10.3969/j.issn.1006-9348.2021.03.060
|
|
LI J, YANG B B, ZHANG H R. Human pose estimation based on SMPL model. Computer Simulation, 2021, 38(3): 292-297, 486.
doi: 10.3969/j.issn.1006-9348.2021.03.060
|
12 |
LI J F, XU C, CHEN Z C, et al. HybrIK: a hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 3382-3392.
|
13 |
|
14 |
KOLOTOUROS N, PAVLAKOS G, BLACK M, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 2252-2261.
|
15 |
CHUN S, PARK S, CHANG J Y. Learnable human mesh triangulation for 3D human pose and shape estimation[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2023: 2849-2858.
|
16 |
YU X, VAN BAAR J, CHEN S H. Joint 3D human shape recovery and pose estimation from a single image with bilayer graph[C]//Proceedings of International Conference on 3D Vision. Washington D. C., USA: IEEE Press, 2021: 505-514.
|
17 |
RONG Y, LIU Z W, LI C, et al. Delving deep into hybrid annotations for 3D human recovery in the wild[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 5339-5347.
|
18 |
JENA S, MULTON F, BOUKHAYMA A. Monocular human shape and pose with dense mesh-borne local image features[C]//Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition. New York, USA: ACM Press, 2021: 1-5.
|
19 |
TAN V, BUDVYTIS I, CIPOLLA R. Indirect deep structured learning for 3D human body shape and pose prediction[C]//Proceedings of 2017 British Machine Vision Conference. London, UK: British Machine Vision Association, 2017: 10753607.
|
20 |
LI Z G, HEYDEN A, OSKARSSON M. A novel joint points and silhouette-based method to estimate 3D human pose and shape. International Journal of Computer Graphics, 2023, 39(5): 1893- 1906.
|
21 |
OMRAN M, LASSNER C, PONS-MOLL G, et al. Neural body fitting: unifying deep learning and model based human pose and shape estimation[EB/OL]. [2023-03-07]. https://arxiv.org/abs/1808.05942.
|
22 |
KOCABAS M, HUANG C H P, HILLIGES O, et al. PARE: part attention regressor for 3D human body estimation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 11107-11117.
|
23 |
ZHANG H W, CAO J, LU G, et al. DaNet: decompose-and-aggregate network for 3D human shape and pose estimation[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 935-944.
|
24 |
SENGUPTA A, BUDVYTIS I, CIPOLLA R. Synthetic training for accurate 3D human pose and shape estimation in the wild[EB/OL]. [2023-03-07]. https://arxiv.org/abs/2009.10013.
|
25 |
LI Z G, OSKARSSON M, HEYDEN A. 3D human pose and shape estimation through collaborative learning and multi-view model-fitting[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1888-1897.
|
26 |
LASSNER C, ROMERO J, KIEFEL M, et al. Unite the people: closing the loop between 3D and 2D human representations[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4704-4713.
|
27 |
DONG Z J, SONG J, CHEN X, et al. Shape-aware multi-person pose estimation from multi-view images[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 11138-11148.
|
28 |
王伟楠, 张荣, 郭立君. 结合稀疏表示和深度学习的视频中3D人体姿态估计. 中国图象图形学报, 2020, 25(3): 456- 467.
URL
|
|
WANG W N, ZHANG R, GUO L J. Video based 3D human pose estimation combining sparse representation and deep learning. Journal of Image and Graphics, 2020, 25(3): 456- 467.
URL
|
29 |
IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1325- 1339.
|
30 |
|
31 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
32 |
|
33 |
RICHTER S R, VINEET V, ROTH S, et al. Playing for data: ground truth from computer games. Berlin, Germany: Springer, 2016.
|
34 |
CALAGARI K, ELGHARIB M, DIDYK P, et al. Data driven 2D-to-3D video conversion for soccer. IEEE Transactions on Multimedia, 2018, 20(3): 605- 619.
|
35 |
REMATAS K, KEMELMACHER-SHLIZERMAN I, CURLESS B, et al. Soccer on your tabletop[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4738-4747.
|
36 |
|
37 |
ZHOU Y, BARNES C, LU J W, et al. On the continuity of rotation representations in neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5738-5746.
|