1 |
MEDVED V, MEDVED S, KOVAC I. Critical appraisal of surface Electromyography(sEMG) as a taught subject and clinical tool in medicine and kinesiology. Frontiers in Neurology, 2020, 11, 560363.
doi: 10.3389/fneur.2020.560363
|
2 |
SUN Y, XU C, LI G F, et al. Intelligent human computer interaction based on non redundant EMG signal. Alexandria Engineering Journal, 2020, 59(3): 1149- 1157.
doi: 10.1016/j.aej.2020.01.015
|
3 |
PALERMO F, COGNOLATO M, GIJSBERTS A, et al. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data[C]//Proceedings of International Conference on Rehabilitation Robotics. Washington D. C., USA: IEEE Press, 2017: 1154-1159.
|
4 |
周旭峰, 王醒策, 武仲科, 等. 基于组合RNN网络的EMG信号手势识别. 光学精密工程, 2020, 28(2): 424- 442.
URL
|
|
ZHOU X F, WANG X C, WU Z K, et al. Gesture recognition with EMG signals based on ensemble RNN. Optics and Precision Engineering, 2020, 28(2): 424- 442.
URL
|
5 |
谷学静, 沈攀, 刘海望, 等. 表面肌电信号的多流卷积网络融合手势识别方法. 计算机应用与软件, 2022, 39(8): 220- 225.
doi: 10.3969/j.issn.1000-386x.2022.08.032
|
|
GU X J, SHEN P, LIU H W, et al. Gesture recognition based on multi-stream convolution network for surface emg signal. Computer Applications and Software, 2022, 39(8): 220- 225.
doi: 10.3969/j.issn.1000-386x.2022.08.032
|
6 |
LI W, SHI P, YU H L. Gesture recognition using surface electromyography and deep learning for prostheses hand: state-of-the-art, challenges, and future. Frontiers in Neuroscience, 2021, 15, 621885.
doi: 10.3389/fnins.2021.621885
|
7 |
HOUSTON M, WU A, ZHANG Y C. Optimizing input for gesture recognition using convolutional networks on HD-sEMG instantaneous images[C]//Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Washington D. C., USA: IEEE Press, 2021: 6539-6542.
|
8 |
范秀琴, 喻洪流, 李素姣. 基于BiLSTM的表面肌电图手势识别算法. 生物医学工程学进展, 2021, 42(2): 92- 96.
doi: 10.3969/j.issn.1674-1242.2021.02.007
|
|
FAN X Q, YU H L, LI S J. Gesture recognition of sEMG based on BiLSTM. Progress in Biomedical Engineering, 2021, 42(2): 92- 96.
doi: 10.3969/j.issn.1674-1242.2021.02.007
|
9 |
AROZI M, CAESARENDRA W, ARIYANTO M, et al. Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements. Symmetry, 2020, 12(4): 541.
doi: 10.3390/sym12040541
|
10 |
MENDES J J A JR, FREITAS M L B, SIQUEIRA H V, et al. Feature selection and dimensionality reduction: an extensive comparison in hand gesture classification by sEMG in eight channels armband approach. Biomedical Signal Processing and Control, 2020, 59, 101920.
doi: 10.1016/j.bspc.2020.101920
|
11 |
ATZORI M, GIJSBERTS A, CASTELLINI C, et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific Data, 2014, 1, 140053.
doi: 10.1038/sdata.2014.53
|
12 |
KRASOULIS A, KYRANOU I, ERDEN M S, et al. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Journal of Neuroengineering and Rehabilitation, 2017, 14(1): 71.
doi: 10.1186/s12984-017-0284-4
|
13 |
GENG W D, DU Y, JIN W G, et al. Gesture recognition by instantaneous surface EMG images. Scientific Reports, 2016, 6, 36571.
doi: 10.1038/srep36571
|
14 |
李沿宏, 江茜, 邹可, 等. 融合注意力机制的多流卷积肌电手势识别网络. 计算机应用研究, 2021, 38(11): 3258- 3263.
URL
|
|
LI Y H, JIANG X, ZOU K, et al. Multi-stream convolutional myoelectric gesture recognition networks fusing attentional mechanisms. Application Research of Computers, 2021, 38(11): 3258- 3263.
URL
|
15 |
卫文韬, 李亚军. 基于双流卷积神经网络的肌电信号手势识别方法. 计算机集成制造系统, 2022, 28(1): 124- 131.
URL
|
|
WEI W T, LI Y J. Surface electromyography based gesture recognition based on dual-stream CNN. Computer Integrated Manufacturing Systems, 2022, 28(1): 124- 131.
URL
|
16 |
HU Y, WONG Y, WEI W T, et al. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS One, 2018, 13(10): e0206049.
doi: 10.1371/journal.pone.0206049
|
17 |
WEI W T, DAI Q F, WONG Y, et al. Surface-electromyography-based gesture recognition by multi-view deep learning. IEEE Transactions on Bio-Medical Engineering, 2019, 66(10): 2964- 2973.
doi: 10.1109/TBME.2019.2899222
|
18 |
PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 2012, 39(8): 7420- 7431.
doi: 10.1016/j.eswa.2012.01.102
|
19 |
JIANG W C, YIN Z Z. Human activity recognition using wearable sensors by deep convolutional neural networks[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York, USA: ACM Press, 2015: 1307-1310.
|
20 |
POWAR O S, CHEMMANGAT K. Comparison of pre-processing filters on the performance of sEMG based pattern recognition[C]//Proceedings of International Conference on Power Electronics Applications and Technology in Present Energy Scenario. Washington D. C., USA: IEEE Press, 2019: 1-6.
|
21 |
SANDOVAL-ESPINO J A, ZAMUDIO-LARA A, MARBÁN-SALGADO J A, et al. Selection of the best set of features for sEMG-based hand gesture recognition applying a CNN architecture. Sensors, 2022, 22(13): 4972.
doi: 10.3390/s22134972
|
22 |
李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述. 计算机工程与应用, 2023, 59(1): 1- 14.
URL
|
|
LI X, ZHANG T, ZHANG Z, et al. Survey of Transformer research in computer vision. Computer Engineering and Applications, 2023, 59(1): 1- 14.
URL
|
23 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
24 |
GUO W Z, WANG J W, WANG S P. Deep multimodal representation learning: a survey. IEEE Access, 2019, 7, 63373- 63394.
doi: 10.1109/ACCESS.2019.2916887
|
25 |
HAN X, ZHANG Z Y, DING N, et al. Pre-trained models: past, present and future. AI Open, 2021, 2, 225- 250.
doi: 10.1016/j.aiopen.2021.08.002
|
26 |
WANG Y J, GAO X R, HONG B, et al. Brain-computer interfaces based on visual evoked potentials. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(5): 64- 71.
doi: 10.1109/MEMB.2008.923958
|
27 |
PIZZOLATO S, TAGLIAPIETRA L, COGNOLATO M, et al. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS One, 2017, 12(10): e0186132.
doi: 10.1371/journal.pone.0186132
|
28 |
SRI-IESARANUSORN P, CHAIYAROJ A, BUEKBAN C, et al. Classification of 41 hand and wrist movements via surface electromyogram using deep neural network. Frontiers in Bioengineering and Biotechnology, 2021, 9, 548357.
doi: 10.3389/fbioe.2021.548357
|