1 |
LEVOY M. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 1988, 8(3): 29- 37.
doi: 10.1109/38.511
|
2 |
DREBIN R A, CARPENTER L, HANRAHAN P. Volume rendering. ACM SIGGRAPH Computer Graphics, 1988, 22(4): 65- 74.
doi: 10.1145/378456.378484
|
3 |
LEVOY M. Efficient ray tracing of volume data. ACM Transactions on Graphics, 1990, 9(3): 245- 261.
doi: 10.1145/78964.78965
|
4 |
王华维, 何柳, 曹轶, 等. 大规模科学数据体绘制技术综述. 国防科技大学学报, 2020, 42(2): 1- 12.
URL
|
|
WANG H W, HE L, CAO Y, et al. A survey of the techniques of volume rendering for large-scale scientific data. Journal of National University of Defense Technology, 2020, 42(2): 1- 12.
URL
|
5 |
NIEH J, LEVOY M. Volume rendering on scalable shared-memory MIMD architectures[C]//Proceedings of 1992 Workshop on Volume Visualization. New York, USA: ACM Press, 1992: 17-24.
|
6 |
MA K L, PAINTER J S, HANSEN C D, et al. Parallel volume rendering using binary-swap compositing. IEEE Computer Graphics and Applications, 1994, 14(4): 59- 68.
doi: 10.1109/38.291532
|
7 |
|
8 |
CHILDS H, PUGMIRE D, AHERN S, et al. Extreme scaling of production visualization software on diverse architectures. IEEE Computer Graphics and Applications, 2010, 30(3): 22- 31.
doi: 10.1109/MCG.2010.51
|
9 |
|
10 |
|
11 |
MOLONEY B, AMENT M, WEISKOPF D, et al. Sort-first parallel volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8): 1164- 1177.
doi: 10.1109/TVCG.2010.116
|
12 |
WANG J M, BI C K, DENG L, et al. A composition-free parallel volume rendering method. Journal of Visualization, 2021, 24(3): 531- 544.
doi: 10.1007/s12650-020-00719-x
|
13 |
HOWISON M, BETHEL E W, CHILDS H. Hybrid parallelism for volume rendering on large-, multi-, and many-core systems. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(1): 17- 29.
doi: 10.1109/TVCG.2011.24
|
14 |
MORELAND K, SEWELL C, USHER W, et al. VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and Applications, 2016, 36(3): 48- 58.
doi: 10.1109/MCG.2016.48
|
15 |
WALD I, JOHNSON G P, AMSTUTZ J, et al. OSPRay—A CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 931- 940.
doi: 10.1109/TVCG.2016.2599041
|
16 |
WU Q, USHER W, PETRUZZA S, et al. VisIt-OSPRay: toward an exascale volume visualization system[C]//Proceedings of the Symposium on Parallel Graphics and Visualization. New York, USA: ACM Press, 2018: 13-24.
|
17 |
|
18 |
罗月童, 薛晔, 刘晓平. 基于GPU的多分辨率体数据重构和渲染. 计算机辅助设计与图形学学报, 2009, 21(1): 107- 111.
URL
|
|
LUO Y T, XUE Y, LIU X P. GPU based multi-resolution volume data reconstruction and rendering. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(1): 107- 111.
URL
|
19 |
赵利平. 基于GPU大规模数据体绘制方法研究与实现[D]. 长沙: 湖南大学, 2009.
|
|
ZHAO L P. The research and implementation on large data sets volume rendering based on GPU[D]. Changsha: Hunan University, 2009. (in Chinese)
|
20 |
陈为, 夏佳志, 张龙, 等. 一种统一的硬件加速自适应EWA Splatting算法. 计算机学报, 2009, 32(8): 1571- 1581.
URL
|
|
CHEN W, XIA J Z, ZHANG L, et al. A uniform hardware-accelerated adaptive EWA Splatting algorithm. Chinese Journal of Computers, 2009, 32(8): 1571- 1581.
URL
|
21 |
ENGEL K, KRAUS M, ERTL T. High-quality pre-integrated volume rendering using hardware-accelerated pixel shading[C]//Proceedings of ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. New York, USA: ACM Press, 2001: 9-16.
|
22 |
STEGMAIER S, STRENGERT M, KLEIN T, et al. A simple and flexible volume rendering framework for graphic-shardware-based raycasting[C]//Proceedings of the 4th Eurographics/IEEE VGTC Conference on Volume Graphics. Washington D.C., USA: IEEE Press, 2005: 187-195.
|
23 |
KRAUS M, STRENGERT M, KLEIN T, et al. Adaptive sampling in three dimensions for volume rendering on GPUs[C]//Proceedings of the 6th International Asia-Pacific Symposium on Visualization. Washington D.C., USA: IEEE Press, 2007: 113-120.
|
24 |
MARCHESIN S, DE VERDIERE G C. High-quality, semi-analytical volume rendering for AMR data. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1611- 1618.
doi: 10.1109/TVCG.2009.149
|
25 |
SINGH J M, NARAYANAN P J. Real-time ray tracing of implicit surfaces on the GPU. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 261- 272.
doi: 10.1109/TVCG.2009.41
|
26 |
LEFOHN A E, SENGUPTA S, KNISS J, et al. Glift: generic, efficient, random-access GPU data structures. ACM Transactions on Graphics, 2006, 25(1): 60- 99.
doi: 10.1145/1122501.1122505
|
27 |
FOLEY T, SUGERMAN J. KD-tree acceleration structures for a GPU raytracer[C]//Proceedings of ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. New York, USA: ACM Press, 2005: 15-22.
|
28 |
FOUT N, MA K L. Transform coding for hardware-accelerated volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1600- 1607.
doi: 10.1109/TVCG.2007.70516
|
29 |
HUGHES D M, LIM I S. Kd-Jump: a path-preserving stackless traversal for faster isosurface raytracing on GPUs. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1555- 1562.
doi: 10.1109/TVCG.2009.161
|
30 |
孔明明. 基于GPU集群的并行体绘制[D]. 杭州: 浙江大学, 2007.
|
|
KONG M M. GPU cluster based parallel volume rendering[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
|
31 |
FOGAL T, CHILDS H, SHANKAR S, et al. Large data visualization on distributed memory multi-GPU clusters[C]//Proceedings of the Conference on High Performance Graphics. New York, USA: ACM Press, 2010: 57-66.
|
32 |
XU C Q, SUN G D, LIANG R H. A survey of volume visualization techniques for feature enhancement. Visual Informatics, 2021, 5(3): 70- 81.
doi: 10.1016/j.visinf.2021.08.001
|
33 |
SHARMA O, ARORA T, KHATTAR A. Graph-based transfer function for volume rendering. Computer Graphics Forum, 2020, 39(1): 76- 88.
doi: 10.1111/cgf.13663
|
34 |
SALHI M, KSANTINI R, ZOUARI B. A real-time image-centric transfer function design based on incremental classification. Journal of Real-Time Image Processing, 2022, 19(1): 185- 203.
doi: 10.1007/s11554-021-01176-x
|
35 |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[EB/OL]. [2023-04-05]. https://arxiv.org/abs/2003.08934.
|
36 |
FU Q C, XU Q S, ONG Y, et al. NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction[EB/OL]. [2023-04-05]. https://arxiv.org/abs/2106.10689.
|
37 |
CHEN D C, ZHANG P, FELDMANN I, et al. Recovering fine details for neural implicit surface reconstruction[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2023: 4330-4339.
|
38 |
MA J, CHEN J J, CHEN L Y, et al. Gaussian mixture model-based target feature extraction and visualization. Journal of Visualization, 2021, 24(3): 545- 563.
doi: 10.1007/s12650-020-00724-0
|
39 |
MA J, CHEN J J, YANG C. Using optimized Gaussian mixture model rules and global tracking graph for feature extraction and tracking in time-varying data. The Visual Computer, 2023, 39(5): 1869- 1892.
doi: 10.1007/s00371-022-02451-z
|
40 |
ENGEL D, ROPINSKI T. Deep volumetric ambient occlusion. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1268- 1278.
doi: 10.1109/TVCG.2020.3030344
|
41 |
NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 3504-3515.
|
42 |
XU Z L, SUN Q, WANG L, et al. Unsupervised image reconstruction for gradient-domain volumetric rendering. Computer Graphics Forum, 2020, 39(7): 193- 203.
doi: 10.1111/cgf.14137
|
43 |
GAO Y, CHANG C, YU X X, et al. A VR-based volumetric medical image segmentation and visualization system with natural human interaction. Virtual Reality, 2022, 26(2): 415- 424.
doi: 10.1007/s10055-021-00577-4
|
44 |
KIM S, JANG Y, KIM S E. Image-based TF colorization with CNN for direct volume rendering. IEEE Access, 2021, 9, 124281- 124294.
doi: 10.1109/ACCESS.2021.3100429
|
45 |
|