1 |
PÉREZ-ZAVALA R, TORRES-TORRITI M, CHEEIN F A, et al. A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 2018, 151(C): 136- 149.
|
2 |
DI GENNARO S F, TOSCANO P, CINAT P, et al. A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard. Frontiers in Plant Science, 2019, 10, 559.
doi: 10.3389/fpls.2019.00559
|
3 |
NUSKE S, ACHAR S, BATES T, et al. Yield estimation in vineyards by visual grape detection[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2011: 2352-2358.
|
4 |
KIERDORF J, WEBER I, KICHERER A, et al. Behind the leaves: estimation of occluded grapevine berries with conditional generative adversarial networks. Frontiers in Artificial Intelligence, 2022, 5, 830026.
doi: 10.3389/frai.2022.830026
|
5 |
HE L L, FANG W T, ZHAO G N, et al. Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods. Computers and Electronics in Agriculture, 2022, 195, 106812.
doi: 10.1016/j.compag.2022.106812
|
6 |
LI T, FENG Q C, QIU Q, et al. Occluded apple fruit detection and localization with a frustum-based point-cloud-processing approach for robotic harvesting. Remote Sensing, 2022, 14(3): 482.
doi: 10.3390/rs14030482
|
7 |
GONG L, WANG W J, WANG T, et al. Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach. Journal of Field Robotics, 2022, 39(1): 69- 84.
doi: 10.1002/rob.22041
|
8 |
黄磊磊, 苗玉彬. 基于深度学习的重叠柑橘分割与形态复原. 农机化研究, 2023, 45(10): 70- 75.
URL
|
|
HUANG L L, MIAO Y B. Overlapping citrus segmentation and morphological restoration based on deep learning. Journal of Agricultural Mechanization Research, 2023, 45(10): 70- 75.
URL
|
9 |
刘妤, 刘洒, 杨长辉, 等. 基于轮廓曲率和距离分析的重叠柑橘分割与重建. 中国农业科技导报, 2020, 22(8): 93- 101.
URL
|
|
LIU Y, LIU S, YANG C H, et al. Segmentation and reconstruction of overlapping citrus based on contour curvature and distance analysis. Journal of Agricultural Science and Technology, 2020, 22(8): 93- 101.
URL
|
10 |
刘妤, 刘洒, 杨长辉, 等. 无遮挡重叠柑橘目标分割与重建. 江苏农业学报, 2019, 35(6): 1441- 1449.
URL
|
|
LIU Y, LIU S, YANG C H, et al. Segmentation and reconstruction of overlapped citrus without blocking by branches and leaves. Jiangsu Journal of Agricultural Sciences, 2019, 35(6): 1441- 1449.
URL
|
11 |
|
12 |
NUSKE S, WILSHUSEN K, ACHAR S, et al. Automated visual yield estimation in vineyards. Journal of Field Robotics, 2014, 31(5): 837- 860.
doi: 10.1002/rob.21541
|
13 |
ZHAN X H, PAN X G, DAI B, et al. Self-supervised scene de-occlusion[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 3784-3792.
|
14 |
AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]//Proceedings of International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2019: 1-8.
|
15 |
AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1805.06725.
|
16 |
|
17 |
KE L, DANELLJAN M, LI X, et al. Mask Transfiner for high-quality instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 4412-4421.
|
18 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
19 |
CHENG B W, GIRSHICK R, DOLLAR P, et al. Boundary IoU: improving object-centric image segmentation evaluation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 15334-15342.
|
20 |
SANTOS T T, DE SOUZA L L, DOS SANTOS A A, et al. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Computers and Electronics in Agriculture, 2020, 170, 105247.
doi: 10.1016/j.compag.2020.105247
|
21 |
|
|
|
22 |
SHEN L, SU J Y, HUANG R, et al. Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field. Frontiers in Plant Science, 2022, 13, 934450.
doi: 10.3389/fpls.2022.934450
|
23 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT++ better real-time instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108- 1121.
doi: 10.1109/TPAMI.2020.3014297
|
24 |
WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation. Advances in Neural Information Processing Systems, 2020, 33, 17721- 17732.
|
25 |
KIRILLOV A, WU Y X, HE K M, et al. Pointrend: image segmentation as rendering[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 9799-9808.
|
26 |
SHEN X, YANG J R, WEI C B, et al. DCT-Mask: discrete cosine transform mask representation for instance segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 8716-8725.
|