| 1 | 
																						 
											   PÉREZ-ZAVALA R,  TORRES-TORRITI M,  CHEEIN F A, et al. A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 2018, 151(C): 136- 149. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   DI GENNARO S F,  TOSCANO P,  CINAT P, et al. A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard. Frontiers in Plant Science, 2019, 10, 559.  
											 												 
																									doi: 10.3389/fpls.2019.00559    
																																															 											 | 
										
																													
																						| 3 | 
																						 
											  NUSKE S, ACHAR S, BATES T, et al. Yield estimation in vineyards by visual grape detection[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2011: 2352-2358. 
											 											 | 
										
																													
																						| 4 | 
																						 
											   KIERDORF J,  WEBER I,  KICHERER A, et al. Behind the leaves: estimation of occluded grapevine berries with conditional generative adversarial networks. Frontiers in Artificial Intelligence, 2022, 5, 830026.  
											 												 
																									doi: 10.3389/frai.2022.830026    
																																															 											 | 
										
																													
																						| 5 | 
																						 
											   HE L L,  FANG W T,  ZHAO G N, et al. Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods. Computers and Electronics in Agriculture, 2022, 195, 106812.  
											 												 
																									doi: 10.1016/j.compag.2022.106812    
																																															 											 | 
										
																													
																						| 6 | 
																						 
											   LI T,  FENG Q C,  QIU Q, et al. Occluded apple fruit detection and localization with a frustum-based point-cloud-processing approach for robotic harvesting. Remote Sensing, 2022, 14(3): 482.  
											 												 
																									doi: 10.3390/rs14030482    
																																															 											 | 
										
																													
																						| 7 | 
																						 
											   GONG L,  WANG W J,  WANG T, et al. Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach. Journal of Field Robotics, 2022, 39(1): 69- 84.  
											 												 
																									doi: 10.1002/rob.22041    
																																															 											 | 
										
																													
																						| 8 | 
																						 
											  黄磊磊, 苗玉彬. 基于深度学习的重叠柑橘分割与形态复原. 农机化研究, 2023, 45(10): 70- 75.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   HUANG L L,  MIAO Y B. Overlapping citrus segmentation and morphological restoration based on deep learning. Journal of Agricultural Mechanization Research, 2023, 45(10): 70- 75.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 9 | 
																						 
											  刘妤, 刘洒, 杨长辉, 等. 基于轮廓曲率和距离分析的重叠柑橘分割与重建. 中国农业科技导报, 2020, 22(8): 93- 101.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   LIU Y,  LIU S,  YANG C H, et al. Segmentation and reconstruction of overlapping citrus based on contour curvature and distance analysis. Journal of Agricultural Science and Technology, 2020, 22(8): 93- 101.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 10 | 
																						 
											  刘妤, 刘洒, 杨长辉, 等. 无遮挡重叠柑橘目标分割与重建. 江苏农业学报, 2019, 35(6): 1441- 1449.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						 | 
																						 
											   LIU Y,  LIU S,  YANG C H, et al. Segmentation and reconstruction of overlapped citrus without blocking by branches and leaves. Jiangsu Journal of Agricultural Sciences, 2019, 35(6): 1441- 1449.  
											 												 
																																					URL    
																																			 											 | 
										
																													
																						| 11 | 
																						 
											 
											 											 | 
										
																													
																						| 12 | 
																						 
											   NUSKE S,  WILSHUSEN K,  ACHAR S, et al. Automated visual yield estimation in vineyards. Journal of Field Robotics, 2014, 31(5): 837- 860.  
											 												 
																									doi: 10.1002/rob.21541    
																																															 											 | 
										
																													
																						| 13 | 
																						 
											  ZHAN X H, PAN X G, DAI B, et al. Self-supervised scene de-occlusion[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 3784-3792. 
											 											 | 
										
																													
																						| 14 | 
																						 
											  AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]//Proceedings of International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2019: 1-8. 
											 											 | 
										
																													
																						| 15 | 
																						 
											 AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[EB/OL]. [2023-07-05].  https://arxiv.org/abs/1805.06725.  
											 											 | 
										
																													
																						| 16 | 
																						 
											 
											 											 | 
										
																													
																						| 17 | 
																						 
											  KE L, DANELLJAN M, LI X, et al. Mask Transfiner for high-quality instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 4412-4421. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   HE K M,  GKIOXARI G,  DOLLAR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386- 397.  
											 												 
																									doi: 10.1109/TPAMI.2018.2844175    
																																															 											 | 
										
																													
																						| 19 | 
																						 
											  CHENG B W, GIRSHICK R, DOLLAR P, et al. Boundary IoU: improving object-centric image segmentation evaluation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 15334-15342. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   SANTOS T T,  DE SOUZA L L,  DOS SANTOS A A, et al. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Computers and Electronics in Agriculture, 2020, 170, 105247.  
											 												 
																									doi: 10.1016/j.compag.2020.105247    
																																															 											 | 
										
																													
																						| 21 | 
																						 
											 
											 											 | 
										
																													
																						 | 
																						 
											 
											 											 | 
										
																													
																						| 22 | 
																						 
											   SHEN L,  SU J Y,  HUANG R, et al. Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field. Frontiers in Plant Science, 2022, 13, 934450.  
											 												 
																									doi: 10.3389/fpls.2022.934450    
																																															 											 | 
										
																													
																						| 23 | 
																						 
											   BOLYA D,  ZHOU C,  XIAO F Y, et al. YOLACT++ better real-time instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108- 1121.  
											 												 
																									doi: 10.1109/TPAMI.2020.3014297    
																																															 											 | 
										
																													
																						| 24 | 
																						 
											   WANG X,  ZHANG R,  KONG T, et al. SOLOv2: dynamic and fast instance segmentation. Advances in Neural Information Processing Systems, 2020, 33, 17721- 17732. 
											 											 | 
										
																													
																						| 25 | 
																						 
											  KIRILLOV A, WU Y X, HE K M, et al. Pointrend: image segmentation as rendering[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 9799-9808. 
											 											 | 
										
																													
																						| 26 | 
																						 
											  SHEN X, YANG J R, WEI C B, et al. DCT-Mask: discrete cosine transform mask representation for instance segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 8716-8725. 
											 											 |