[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [2] WANG G Q, LI T R, ZHANG P F, et al. Double-local rough sets for efficient data mining[J]. Information Sciences, 2021, 571:475-498. [3] COLAS-MARQUEZ R, MAHFOUF M. Data mining and modelling of charpy impact energy for alloy steels using fuzzy rough sets[J]. IFAC-PapersOnLine, 2017, 50(1):14970-14975. [4] 涂添翼. 大数据环境下面向邻域粗糙计算流式并行化研究与应用[D]. 成都:电子科技大学, 2019. TU T Y. Research and application of streaming parallelization to neighborhood rough computing under big data environment[D].Chengdu:University of Electronic Science and Technology of China, 2019. (in Chinese) [5] YAO W, ZHANG G, ZHOU C J. Real-valued hemimetric-based fuzzy rough sets and an application to contour extraction of digital surfaces[J]. Fuzzy Sets and Systems, 2023, 459:201-219. [6] ZHANG J B, WONG J S, PAN Y, et al. A parallel matrix-based method for computing approximations in incomplete information systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2):326-339. [7] YANG L, QIN K Y, SANG B B, et al. Vaguely quantified fuzzy dominance rough set and its incremental maintenance approximation approaches[J]. Soft Computing, 2023, 27(2):867-886. [8] XU Y, WANG Q, SUN W K. Matrix-based incremental updating approximations in multigranulation rough set under two-dimensional variation[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(4):1041-1065. [9] SU L R, YU F S. Matrix approach to spanning matroids of rough sets and its application to attribute reduction[J]. Theoretical Computer Science, 2021, 893:105-116. [10] 徐怡, 侯迪. 基于矩阵的粗糙集近似集快速计算算法[J]. 计算机工程, 2023, 49(5):22-28. XU Y, HOU D. Fast calculation algorithm of approximations in rough sets based on matrices[J]. Computer Engineering, 2023, 49(5):22-28.(in Chinese) [11] MA L. The investigation of covering rough sets by Boolean matrices[J]. International Journal of Approximate Reasoning, 2018, 100:69-84. [12] WANG J Q, ZHANG X H. Matrix approaches for some issues about minimal and maximal descriptions in covering-based rough sets[J].International Journal of Approximate Reasoning, 2019,104:126-143. [13] LIU C H, CAI K C, MIAO D Q, et al. Novel matrix-based approaches to computing minimal and maximal descriptions in covering-based rough sets[J]. Information Sciences, 2020, 539:312-326. [14] WANG J Q, ZHANG X H, LIU C H. Grained matrix and complementary matrix:novel methods for computing information descriptions in covering approximation spaces[J]. Information Sciences, 2022, 591:68-87. [15] 闫鑫, 景运革. 矩阵增量属性约简算法[J]. 小型微型计算机系统, 2018, 39(6):1245-1249. YAN X, JING Y G. Matrix-based incremental attribute reduction approach[J]. Journal of Chinese Computer Systems, 2018, 39(6):1245-1249.(in Chinese) [16] 黄倩倩, 李天瑞, 杨新, 等. 面向不完备混合数据的矩阵增量知识维护方法研究[J]. 小型微型计算机系统, 2020, 41(4):868-877. HUANG Q Q, LI T R, YANG X, et al. Matrix-based incremental approaches to maintaining knowledge for incomplete hybrid data[J]. Journal of Chinese Computer Systems, 2020, 41(4):868-877.(in Chinese) [17] XU Y, WANG M, HU S Z. Matrix-based fast granularity reduction algorithm of multi-granulation rough set[J]. Artificial Intelligence Review, 2023, 56(5):4113-4135. [18] ZHANG J B, ZHU Y, PAN Y, et al. Efficient parallel Boolean matrix based algorithms for computing composite rough set approximations[J]. Information Sciences:an International Journal, 2016, 329(C):287-302. [19] HU Y M, LI T R, HU J, et al. Parallel attribute reduction algorithms based on CUDA[C]//Proceedings of World Scientific Proceedings Series on Computer Engineering and Information Science.[S.l.]:AAAI Press,2018:469-476. [20] 董杰. 邻域粗糙集的并行属性约简方法研究[D]. 镇江:江苏科技大学, 2020. DONG J. Research on parallel attribute reduction of neighborhood rough set[D].Zhenjiang:Jiangsu University of Science and Technology, 2020. (in Chinese) [21] WU Z J, CHEN N, GAO Y. Semi-monolayer cover rough set:concept, property and granular algorithm[J]. Information Sciences, 2018, 456:97-112. [22] 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(8):6-14. WU Z J, LIU Y L, GAO Y. Cover rough sets on a semi-monolayer cover[J]. Journal of Shandong University (Natural Science), 2014, 49(8):6-14.(in Chinese) [23] WU Z J, WANG H, CHEN N, et al. Semi-monolayer covering rough set on set-valued information systems and its efficient computation[J]. International Journal of Approximate Reasoning, 2021, 130:83-106. [24] 吴正江, 张亚宁, 张真, 等. 拟单层覆盖粗糙集中近似集的增量更新算法[J]. 计算机工程, 2022, 48(6):200-206, 212. WU Z J, ZHANG Y N, ZHANG Z, et al. Incremental updating algorithm for approximation sets on semi-monolayer cover rough sets[J]. Computer Engineering, 2022, 48(6):200-206, 212.(in Chinese) [25] 吴正江, 杨天, 郑爱玲, 等. 融合拟单层覆盖粗集的集值数据平衡方法研究[J]. 计算机工程与应用, 2022, 58(19):166-173. WU Z J, YANG T, ZHENG A L, et al. Study on set-valued data balancing method by semi-monolayer covering rough set[J]. Computer Engineering and Applications, 2022, 58(19):166-173.(in Chinese) [26] NVIDIA.CUDA.Toolkit.Documentation.V11.1.0[EB/OL].[2023-04-08].https://docs.nvidia.com/cuda/archive/11.1.0/. [27] CuPy.CuPy.API.Reference[EB/OL].[2023-04-08].https://pypi.org/project/cupy-cuda111/10.3.1. |