1 |
张安, 罗琦, 申优, 等. 基于声音处理的箱变变压器内部火花放电故障诊断方法. 工业加热, 2023, 52(5): 63-66, 76.
URL
|
|
ZHANG A, LUO Q, SHEN Y, et al. Internal spark discharge fault diagnosis method of box transformer based on sound processing. Industrial Heating, 2023, 52(5): 63-66, 76.
URL
|
2 |
许晓路, 刘川燕, 罗传仙. 基于机理/数据混合驱动的变压器故障诊断模型研究. 机电信息, 2021, (29): 1- 3.
URL
|
|
XU X L, LIU C Y, LUO C X. Research on transformer fault diagnosis model based on mechanism/data hybrid drive. Mechanical and Electrical Information, 2021, (29): 1- 3.
URL
|
3 |
马小东, 赵凡, 任芃锟. 基于时空数据的驻留行为特征可视分析. 计算机工程, 2023, 49(2): 105- 111.
URL
|
|
MA X D, ZHAO F, REN P K. Visual analysis of resident behavior characteristics based on spatio-temporal data. Computer Engineering, 2023, 49(2): 105- 111.
URL
|
4 |
冯志亮, 肖涵麒, 任文凤, 等. 基于主成分分析的海鸥优化支持向量机变压器故障诊断. 中国测试, 2023, 49(2): 99- 105.
URL
|
|
FENG Z L, XIAO H Q, REN W F, et al. Transformer fault diagnosis based on principal component analysis and seagull optimization support vector machine. China Measurement and Test, 2023, 49(2): 99- 105.
URL
|
5 |
李学生, 张尊扬. 基于贝叶斯分类的变压器绕组故障诊断算法. 济南大学学报(自然科学版), 2021, 35(4): 412- 416.
URL
|
|
LI X S, ZHANG Z Y. Fault diagnosis algorithm of transformer windings based on Bayesian classification. Journal of University of Jinan (Science and Technology), 2021, 35(4): 412- 416.
URL
|
6 |
徐耀松, 李佳旺, 段彦强. 基于相似度机制AdaBoost-DBN的变压器故障层级诊断. 高压电器, 2023, 59(6): 154- 164.
URL
|
|
XU Y S, LI J W, DUAN Y Q. Fault hierarchical diagnosis of transformer based on AdaBoost-DBN similarity mechanism. High Voltage Apparatus, 2023, 59(6): 154- 164.
URL
|
7 |
胡晨, 尹恩韬, 乐健. 基于多源数据融合的变压器典型故障诊断模型研究. 电工电气, 2023,(7): 41-45, 65.
URL
|
|
HU C, YIN E T, LE J. Research on typical fault diagnosis model of transformers based on multi-source data fusion. Electrotechnics Electric, 2023,(7): 41-45, 65.
URL
|
8 |
陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述. 计算机工程, 2022, 48(11): 1- 13.
URL
|
|
CHEN L C, FU D Y. Survey on machine learning methods for small sample data. Computer Engineering, 2022, 48(11): 1- 13.
URL
|
9 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
doi: 10.1145/3065386
|
10 |
|
11 |
LI J W, LUONG T, JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1106-1115.
|
12 |
|
13 |
|
14 |
黄文礼, 茆骥, 张银胜, 等. 基于深度学习的变压器故障信号识别算法. 电子技术应用, 2023, 49(3): 54- 60.
URL
|
|
HUANG W L, MAO J, ZHANG Y S, et al. Deep learning based transformer fault signal recognition algorithm. Application of Electronic Technique, 2023, 49(3): 54- 60.
URL
|
15 |
马向南, 杨涛, 王云龙, 等. 基于轻量化神经网络及模型压缩的变压器油色谱故障诊断方法. 供用电, 2023, 40(5): 84- 91.
URL
|
|
MA X N, YANG T, WANG Y L, et al. Transformer dissolved gas fault diagnosis method based on lightweight neural network and model quantization. Distribution & Utilization, 2023, 40(5): 84- 91.
URL
|
16 |
李腾飞, 郝玉杰, 袁方, 等. 基于多源特征信息融合的油浸式变压器故障智能诊断模型. 电工电能新技术, 2023, 42(1): 48- 57.
URL
|
|
LI T F, HAO Y J, YUAN F, et al. Intelligent transformer fault diagnosis model based on multi-source feature information fusion. Advanced Technology of Electrical Engineering and Energy, 2023, 42(1): 48- 57.
URL
|
17 |
于达, 张玮, 王辉. 基于LSTM神经网络的油浸式变压器异常声纹诊断方法研究. 智慧电力, 2023, 51(2): 45- 52.
URL
|
|
YU D, ZHANG W, WANG H. Abnormal voiceprint diagnosis method of oil-immersed transformer based on LSTM neural network. Smart Power, 2023, 51(2): 45- 52.
URL
|
18 |
翟智勇. 基于KNN改进的BP神经网络的油浸式配电变压器故障诊断. 电子测试, 2022,(19): 66- 68.
URL
|
|
ZHAI Z Y. Fault diagnosis technology of oil-immersed distribution transformer based on KNN improved BP neural network. Electronic Test, 2022,(19): 66- 68.
URL
|
19 |
杨飏, 邢光兵. 基于三比值法的变压器故障诊断识别. 机电信息, 2021,(11): 11- 12.
URL
|
|
YANG Y, XING G B. Transformer fault diagnosis and identification based on three ratio method. Mechanical and Electrical Information, 2021,(11): 11- 12.
URL
|
20 |
李雅欣, 侯慧娟, 张立静, 等. 近邻成分分析和k近邻学习融合的变压器不平衡样本故障诊断. 高电压技术, 2021, 47(2): 472- 479.
URL
|
|
LI Y X, HOU H J, ZHANG L J, et al. Transformer fault diagnosis with unbalanced samples based on neighborhood component analysis and k-nearest neighbors. High Voltage Engineering, 2021, 47(2): 472- 479.
URL
|
21 |
张彼德, 梅婷, 王涛. 电力变压器故障诊断的k值自适应加权KNN算法研究. 湖北电力, 2020, 44(2): 6- 12.
URL
|
|
ZHANG B D, MEI T, WANG T. Research on adaptive k-value weighted KNN algorithm for power transformer fault diagnosis. Hubei Electric Power, 2020, 44(2): 6- 12.
URL
|
22 |
樊清川, 于飞, 宣敏. 基于优化Bi-LSTM模型的电力变压器故障诊断. 计算机仿真, 2022, 39(11): 136- 140.
URL
|
|
FAN Q C, YU F, XUAN M. Power transformer fault diagnosis based on optimized Bi-LSTM model. Computer Simulation, 2022, 39(11): 136- 140.
URL
|
23 |
刘可真, 苟家萁, 骆钊, 等. 基于粒子群优化-长短期记忆网络模型的变压器油中溶解气体浓度预测方法. 电网技术, 2020, 44(7): 2778- 2785.
URL
|
|
LIU K Z, GOU J Q, LUO Z, et al. Prediction of dissolved gas concentration in transformer oil based on PSO-LSTM model. Power System Technology, 2020, 44(7): 2778- 2785.
URL
|
24 |
王艳, 李伟, 赵洪山, 等. 基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法. 电力系统保护与控制, 2023, 51(4): 32- 42.
URL
|
|
WANG Y, LI W, ZHAO H S, et al. Transformer DGA fault diagnosis method based on DBN-SSAELM. Power System Protection and Control, 2023, 51(4): 32- 42.
URL
|
25 |
于晗, 蔡鸿明, 张翼飞, 等. 基于增量式流处理的自适应群体划分方法. 计算机学报, 2020, 43(12): 2337- 2351.
URL
|
|
YU H, CAI H M, ZHANG Y F, et al. An approach to constructing adaptive crowd groups based on incremental stream processing. Chinese Journal of Computers, 2020, 43(12): 2337- 2351.
URL
|
26 |
YU H, XU L D, CAI H M, et al. A stream processing framework based on linked data for information collaborating of regional energy networks. IEEE Transactions on Industrial Informatics, 2021, 17(1): 179- 188.
doi: 10.1109/TII.2019.2957517
|
27 |
董晓莉, 顾成奎, 王正欧. 基于形态的时间序列相似性度量研究. 电子与信息学报, 2007, 29(5): 1228- 1231.
URL
|
|
DONG X L, GU C K, WANG Z O. Research on shape-based time series similarity measure. Journal of Electronics & Information Technology, 2007, 29(5): 1228- 1231.
URL
|