1 |
MOHD A, ORTJOHANN E, SCHMELTER A, et al. Challenges in integrating distributed energy storage systems into future smart grid[C]//Proceedings of IEEE International Symposium on Industrial Electronics. Washington D. C., USA: IEEE Press, 2008: 1627-1632.
|
2 |
于飞, 樊清川, 宣敏. 基于蝗虫优化Bi-LSTM网络的电机轴承故障预测. 电机与控制学报, 2022, 26(6): 9- 17.
URL
|
|
YU F, FAN Q C, XUAN M. Motor bearing fault prediction based on grasshopper optimized Bi-LSTM network. Electric Machines and Control, 2022, 26(6): 9- 17.
URL
|
3 |
ZHANG K, XU Y G, LIAO Z Q, et al. A novel fast entrogram and its applications in rolling bearing fault diagnosis. Mechanical Systems and Signal Processing, 2021, 154, 107582.
doi: 10.1016/j.ymssp.2020.107582
|
4 |
FACCIN M, SCHAUB M T, DELVENNE J C. Entrograms and coarse graining of dynamics on complex networks. Journal of Complex Networks, 2018, 6(5): 661- 678.
doi: 10.1093/comnet/cnx055
|
5 |
LI H, LIU T, WU X, et al. An optimized VMD method and its applications in bearing fault diagnosis. Measurement, 2020, 166, 108185.
doi: 10.1016/j.measurement.2020.108185
|
6 |
ZHANG J Q, SUN Y, GUO L, et al. A new bearing fault diagnosis method based on modified convolutional neural networks. Chinese Journal of Aeronautics, 2020, 33(2): 439- 447.
doi: 10.1016/j.cja.2019.07.011
|
7 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
8 |
CHEN X H, ZHANG B K, GAO D. Bearing fault diagnosis base on multi-scale CNN and LSTM model. Journal of Intelligent Manufacturing, 2021, 32(4): 971- 987.
doi: 10.1007/s10845-020-01600-2
|
9 |
PURWINS H, LI B, VIRTANEN T, et al. Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(2): 206- 219.
doi: 10.1109/JSTSP.2019.2908700
|
10 |
YU D, DENG L. Deep learning and its applications to signal and information processing. IEEE Signal Processing Magazine, 2011, 28(1): 145- 154.
doi: 10.1109/MSP.2010.939038
|
11 |
蒋芸, 谭宁, 张海, 等. 基于条件生成对抗网络的咬翼片图像分割. 计算机工程, 2019, 45(4): 223- 227.
URL
|
|
JIANG Y, TAN N, ZHANG H, et al. Bitewing radiography image segmentation based on conditional generative adversarial network. Computer Engineering, 2019, 45(4): 223- 227.
URL
|
12 |
李靓, 孙存威, 谢凯, 等. 基于深度学习的小样本声纹识别方法. 计算机工程, 2019, 45(3): 262-267, 272.
URL
|
|
LI J, SUN C W, XIE K, et al. Small sample voiceprint recognition method based on deep learning. Computer Engineering, 2019, 45(3): 262-267, 272.
URL
|
13 |
BANKY G P, WONG K K. Troubleshooting exercises using circuit simulator software: support for deep learning in the study of electronic circuits[C]//Proceedings of IEEE International Conference on Engineering Education. Washington D. C., USA: IEEE Press, 2007: 248-257.
|
14 |
ZHANG Z C, FIDAN I, ALLEN M. Detection of material extrusion in-process failures via deep learning. Inventions, 2020, 5(3): 25.
doi: 10.3390/inventions5030025
|
15 |
BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 1877-1901.
|
16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
17 |
YU X, QIAN Y, GENG Z, et al. EMC2A-Net: an efficient multibranch cross-channel attention network for SAR target classification. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1- 14.
|
18 |
CHAI J Y, ZENG H, LI A M, et al. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Machine Learning with Applications, 2021, 6, 100134.
doi: 10.1016/j.mlwa.2021.100134
|
19 |
LAURIOLA I, LAVELLI A, AIOLLI F. An introduction to deep learning in natural language processing: models, techniques, and tools. Neurocomputing, 2022, 470, 443- 456.
doi: 10.1016/j.neucom.2021.05.103
|
20 |
MAIER H R, GALELLI S, RAZAVI S, et al. Exploding the myths: an introduction to artificial neural networks for prediction and forecasting. Environmental Modelling & Software, 2023, 167, 105776.
|
21 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey. Computational Visual Media, 2022, 8(3): 331- 368.
doi: 10.1007/s41095-022-0271-y
|
22 |
CHOI M, KIM H, HAN B, et al. Channel attention is all you need for video frame interpolation. Artificial Intelligence, 2020, 34(7): 10663- 10671.
|
23 |
BUHRMESTER V, MÜNCH D, ARENS M. Analysis of explainers of black box deep neural networks for computer vision: a survey. Machine Learning and Knowledge Extraction, 2021, 3(4): 966- 989.
doi: 10.3390/make3040048
|
24 |
ZHANG C X, SONG D J, CHEN Y C, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. Artificial Intelligence, 2019, 33(1): 1409- 1416.
|
25 |
SETIAWAN F, YAHYA B N, LEE S L. Normalized attention inter-channel pooling for deep convolutional neural network regularization. Neural Processing Letters, 2023, 55(7): 9315- 9333.
doi: 10.1007/s11063-023-11203-6
|
26 |
WANG P, NIU T, MAO Y R, et al. Fine-grained grape leaf diseases recognition method based on improved lightweight attention network. Frontiers in Plant Science, 2021, 12, 738042.
doi: 10.3389/fpls.2021.738042
|
27 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
28 |
LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification. PHM Society European Conference, 2016, 3(1): 3125- 3136.
|
29 |
STEIN G, CHMÚRNY R, ROSÍK V. Compact vibration measuring system for in-vehicle applications. Measurement Science Review, 2011, 11(5): 154- 167.
|
30 |
NUGROHO K S, SUKMADEWA A Y, YUDISTIRA N. Large-scale news classification using BERT language model: spark NLP approach[C]//Proceedings of the 6th International Conference on Sustainable Information Engineering and Technology. New York, USA: ACM Press, 2021: 240-246.
|
31 |
SANDERSON K. GPT-4 is here: what scientists think. Nature, 2023, 615(7954): 773.
|
32 |
LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 5455-5463.
|
33 |
SHI Y K, WANG Z W, DU X J, et al. Research on the membrane fouling diagnosis of MBR membrane module based on ECA-CNN. Journal of Environmental Chemical Engineering, 2022, 10(3): 107649.
|
34 |
XIONG H P, LU H, LIU C X, et al. From open set to closed set: counting objects by spatial divide-and-conquer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8362-8371.
|
35 |
VUJOVIC Ž D. Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 2021, 12(6): 599- 606.
|
36 |
SAJJADI M S M, BACHEM O, LUCIC M, et al. Assessing generative models via precision and recall[C]//Proceedings of NIPS'18. Cambridge, USA: MIT Press, 2018: 31-43.
|
37 |
RAMCHARAN A, MCCLOSKEY P, BARANOWSKI K, et al. A mobile-based deep learning model for cassava disease diagnosis. Frontiers in Plant Science, 2019, 10, 272.
|
38 |
ERICKSON B J, KITAMURA F. Magician's corner: 9. performance metrics for machine learning models. Radiology: Artificial Intelligence, 2021, 3(3): e200126.
|
39 |
SHEN R Q, GAO L Y, MA Y A. On optimal early stopping: over-informative versus under-informative parametrization[EB/OL]. [2023-09-02]. http://arxiv.org/abs/2202.09885v2.
|