1 |
XU Q, LI K Q, WANG J Q, et al. The status, challenges, and trends: an interpretation of technology roadmap of intelligent and connected vehicles in China. Journal of Intelligent and Connected Vehicles, 2022, 5(1): 1- 7.
|
2 |
ZHANG Q D, ZHANG T R, MA L. Human acceptance of autonomous vehicles: research status and prospects. International Journal of Industrial Ergonomics, 2023, 95, 103458.
|
3 |
CHEN Y B, LI L X. Advances in intelligent vehicles. [S. 1. ]: Academic Press, 2014.
|
4 |
YE B L, WU W M, RUAN K Y, et al. A survey of model predictive control methods for traffic signal control. CAA Journal of Automatica Sinica, 2019, 6(3): 623- 640.
|
5 |
KUUTTI S, BOWDEN R, JIN Y C, et al. A survey of deep learning applications to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 712- 733.
|
6 |
李克强, 李家文, 常雪阳, 等. 智能网联汽车云控系统原理及其典型应用. 汽车安全与节能学报, 2020, 11(3): 261- 275.
|
|
LI K Q, LI J W, CHANG X Y, et al. Principles and typical applications of cloud control system for intelligent and connected vehicles. Journal of Automotive Safety and Engergy, 2020, 11(3): 261- 275.
|
7 |
LEVINE S, FINN S, DARREL T, et al. End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 2015, 17(1): 1334- 1373.
|
8 |
LEVINE S, PASTOR P, KRIZHEVSKY A, et al. Learning hand-eye coordination for robotic grasping with large-scale data collection[C]//Proceedings of 2016 International Symposium on Experimental Robotics. Berlin, Germany: Springer, 2017: 173-184.
|
9 |
RAUSCH V, HANSEN A, SOLOWJOW E, et al. Learning a deep neural net policy for end-to-end control of autonomous vehicles[C]//Proceedings of 2017 American Control Conference. Washington D. C., USA: IEEE Press, 2017: 4914-4919.
|
10 |
KUUTTI S, BOWDEN R, JIN Y C, et al. A survey of deep learning applications to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 712- 733.
|
11 |
SYAVASYA C V S R, MUDDANA A L. Optimization of autonomous vehicle speed control mechanisms using hybrid DDPG-SHAP-DRL-stochastic algorithm. Advances in Engineering Software, 2022, 173, 103245.
|
12 |
KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 4909- 4926.
|
13 |
DESJARDINS C, CHAIB-DRAA B. Cooperative adaptive cruise control: a reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems, 2021, 12(4): 1248- 1260.
|
14 |
WANG P, CHAN C Y, FORTELLE A D L. A reinforcement learning based approach for automated lane change maneuvers[C]//Proceeding of IEEE Symposium on Intelligent Vehicle. Washington D. C., USA: IEEE Press, 2018: 1379-1384.
|
15 |
ALZUBAIDI A, AL SUMAITI A S, BYON Y J, et al. Emergency vehicle aware lane change decision model for autonomous vehicles using deep reinforcement learning. IEEE Access, 2023, 11, 27127- 27137.
|
16 |
YANG F, LI X Y, LIU Q, et al. Filling action selection reinforcement learning algorithm for safer autonomous driving in multi-traffic scenes[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE Press, 2023: 1-7.
|
17 |
LIAO J D, LIU T, TANG X L, et al. Decision-making strategy on highway for autonomous vehicles using deep reinforcement learning. IEEE Access, 2020, 8, 177804- 177814.
|
18 |
ZHAO D B, HU Z H, XIA Z P, et al. Full-range adaptive cruise control based on supervised adaptive dynamic programming. Neurocomputing, 2014, 125, 57- 67.
|
19 |
WANG B, ZHAO D B, LI C D, et al. Design and implementation of an adaptive cruise control system based on supervised actor-critic learning[C]//Proceedings of the 5th International Conference on Information Science and Technology. Washington D. C., USA: IEEE Press, 2015: 243-248.
|
20 |
HE Y X, LIU Y, YANG L, et al. Deep adaptive control: deep reinforcement learning-based adaptive vehicle trajectory control algorithms for different risk levels. IEEE Transactions on Intelligent Vehicles, 2023, 9(1): 1654- 1666.
|
21 |
KENDALL A, HAWKE J, JANZ D, et al. Learning to drive in a day[C]//Proceedings of International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2019: 8248-8254.
|
22 |
XIANG Y, WEN J Y, LUO W G, et al. Research on collision-free control and simulation of single-agent based on an improved DDPG algorithm[C]//Proceedings of the 35th Youth Academic Annual Conference of Chinese Association of Automation. Washington D. C., USA: IEEE Press, 2020: 552-556.
|
23 |
CHEN X C, WEI J Q, REN X Q, et al. Automatic overtaking on two-way roads with vehicle interactions based on proximal policy optimization[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE Press, 2021: 1057-1064.
|
24 |
MUZAHID A J M, KAMARULZAMAN S F, RAHMAN M A. Comparison of PPO and SAC algorithms towards decision making strategies for collision avoidance among multiple autonomous vehicles[C]//Proceedings of International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management. Washington D. C., USA: IEEE Press, 2021: 200-205.
|
25 |
|
26 |
HE X K, LV C. Toward personalized decision making for autonomous vehicles: a constrained multi-objective reinforcement learning technique. Transportation Research Part C: Emerging Technologies, 2023, 156, 104352.
|
27 |
CHEN D, JIANG L S, WANG Y, et al. Autonomous driving using safe reinforcement learning by incorporating a regret-based human lane-changing decision model[C]//Proceedings of 2020 American Control Conference. Washington D. C., USA: IEEE Press, 2020: 4355-4361.
|