作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (5): 1-8. doi: 10.19678/j.issn.1000-3428.0069423

• 空天地一体化算力网络 • 上一篇    下一篇

空地算力网络中的异构资源协同优化

李斌, 山慧敏   

  1. 南京信息工程大学计算机学院, 江苏 南京 210044
  • 收稿日期:2024-02-26 修回日期:2024-05-30 出版日期:2025-05-15 发布日期:2024-08-16
  • 通讯作者: 李斌,E-mail:bin.li@nuist.edu.cn E-mail:bin.li@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(62101277)。

Collaborative Optimization of Heterogeneous Resources in Air-Ground Computing Power Networks

LI Bin, SHAN Huimin   

  1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Received:2024-02-26 Revised:2024-05-30 Online:2025-05-15 Published:2024-08-16

摘要: 针对算力网络中终端用户计算能力不足及边缘节点算力分配不均的问题,提出一种以激励机制为基础的无人机(UAV)协同终端直连(D2D)边缘计算方案。首先,在满足计算资源、发射功率、计算资源单价等限制条件下,通过联合优化任务卸载比例、计算资源限制量、UAV飞行轨迹、UAV和用户的发射功率以及计算资源出售单价,提出一个系统收益最大化问题。其次,利用近端策略优化(PPO)确定用户卸载和购买策略,通过在多个时间步骤上迭代优化策略最大化累积奖励,并引入剪切项以限制策略更新的幅度,以确保求解算法的稳定性。仿真结果显示,基于PPO的系统收益最大化算法相比基线算法具有更好的收敛性,并能够有效提升系统总收益。

关键词: 空地算力网络, 激励机制, 终端直连通信, 计算卸载, 近端策略优化

Abstract: To address the challenges of insufficient computing capacity of end users and the unbalanced distribution of computing power among edge nodes in computing power networks, this study proposes an Unmanned Aerial Vehicle (UAV)-assisted Device-to-Device (D2D) edge computing solution based on incentive mechanisms. First, under constraints involving computing resources, transmission power, and the unit pricing of computing resources, a unified optimization problem is formulated to maximize system revenue. This problem aims to optimize the task offloading ratio, computing resource constraints, UAV trajectory, as well as the transmission power and unit pricing of computing resources for both UAVs and users. The Proximal Policy Optimization (PPO) algorithm is employed to establish user offloading and purchasing strategies. In addition, an iterative strategy is implemented at each time step to solve the optimization problem and obtain the optimal solution. The simulation results demonstrate that the PPO-based system revenue maximization algorithm exhibits superior convergence and improves overall system revenue compared to the baseline algorithm.

Key words: air-ground computing power network, incentive mechanism, Device-to-Device (D2D) communication, computation offloading, Proximal Policy Optimization (PPO)

中图分类号: