1 |
孟伟, 袁艺琳. 迁移学习应用于新型冠状病毒肺炎诊断综述. 计算机科学与探索, 2023, 17(3): 561- 576.
|
|
MENG W, YUAN Y L. Review of transfer learning applied to diagnosis of COVID-19. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 561- 576.
|
2 |
杨刚, 贺冬葛, 戴丽珍. 基于CNN和粒子群优化SVM的手写数字识别研究. 华东交通大学学报, 2020, 37(4): 41- 47.
|
|
YANG G, HE D G, DAI L Z. Improved handwritten digit recognition based on CNN and PSO-SVM. Journal of East China Jiaotong University, 2020, 37(4): 41- 47.
|
3 |
JAISWAL A, GIANCHANDANI N, SINGH D, et al. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 2021, 39(15): 5682- 5689.
doi: 10.1080/07391102.2020.1788642
|
4 |
SEN S, SAHA S, CHATTERJEE S, et al. A bi-stage feature selection approach for COVID-19 prediction using chest CT images. Applied Intelligence, 2021, 51(12): 8985- 9000.
doi: 10.1007/s10489-021-02292-8
|
5 |
GAO K, SU J, JIANG Z, et al. Dual-branch combination network: towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Medical Image Analysis, 2021, 67, 101836.
doi: 10.1016/j.media.2020.101836
|
6 |
PANWAR H, GUPTA P K, SIDDIQUI M K, et al. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images. Chaos, Solitons & Fractals, 2020, 140, 110190.
|
7 |
朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法. 计算机科学与探索, 2022, 16(9): 2108- 2120.
|
|
ZHU B Y, LIU Z, ZHANG J X. COVID-19 detection algorithm combining Grad-CAM and convolutional neural network. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108- 2120.
|
8 |
WANG L, LIN Z Q, WONG A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports, 2020, 10(1): 19549.
doi: 10.1038/s41598-020-76550-z
|
9 |
GAUR P, MALAVIYA V, GUPTA A, et al. COVID-19 disease identification from chest CT images using empirical wavelet transformation and transfer learning. Biomedical Signal Processing and Control, 2022, 71, 103076.
doi: 10.1016/j.bspc.2021.103076
|
10 |
WANG Z, LIU Q, DOU Q. Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE Journal of Biomedical and Health Informatics, 2020, 24(10): 2806- 2813.
doi: 10.1109/JBHI.2020.3023246
|
11 |
LU F, ZHANG Z, ZHAO S, et al. CMM: a CNN-MLP model for COVID-19 lesion segmentation and severity grading. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(4): 789- 802.
doi: 10.1109/TCBB.2023.3253901
|
12 |
RAHIMZADEH M, ATTAR A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 2020, 19, 100360.
doi: 10.1016/j.imu.2020.100360
|
13 |
LEBEDEV V, LEMPITSKY V. Fast ConvNets using group-wise brain damage[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 512-521.
|
14 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 442-451.
|
15 |
GARG M, DHIMAN G. A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Computing and Applications, 2021, 33(4): 1311- 1328.
doi: 10.1007/s00521-020-05017-z
|
16 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of IEEE International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019.
|
17 |
LIM S, KIM I, KIM T, et al. Fast autoaugment[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 226-237.
|
18 |
张红斌, 石皞炜, 熊其鹏, 等. 基于主动样本精选与跨模态语义挖掘的图像情感分析. 控制与决策, 2022, 37(11): 2949- 2958.
|
|
ZHANG H B, SHI H W, XIONG Q P, et al. Image sentiment analysis via active sample refinement and cross-modal semantics mining. Control and Decision, 2022, 37(11): 2949- 2958.
|
19 |
CHEN L F, WANG K L, LI M, et al. K-means clustering-based kernel canonical correlation analysis for multimodal emotion recognition in human-robot interaction. IEEE Transactions on Industrial Electronics, 2022, 70(1): 1016- 1024.
|
20 |
|
21 |
HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2006: 159-167.
|
22 |
|
23 |
SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2007.15842.
|
24 |
RAHMAN T, KHANDAKAR A, QIBLAWEY Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 2021, 132, 104319.
doi: 10.1016/j.compbiomed.2021.104319
|
25 |
HUANG L, RUAN S, DENOEUX T. Covid-19 classification with deep neural network and belief functions[C]//Proceedings of the 5th International Conference on Biological Information and Biomedical Engineering. New York, USA: ACM Press, 2021: 224-231.
|
26 |
LIU Q, DOU Q, YU L, et al. MS-net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Transactions on Medical Imaging, 2020, 39(9): 2713- 2724.
doi: 10.1109/TMI.2020.2974574
|
27 |
ZHANG H B, LIANG W N, LI C X, et al. DCML: Deep contrastive mutual learning for COVID-19 recognition. Biomedical Signal Processing and Control, 2022, 77, 103770.
doi: 10.1016/j.bspc.2022.103770
|
28 |
YANG H, WANG L Y, XU Y T, et al. CovidViT: a novel neural network with self-attention mechanism to detect Covid-19 through X-ray images. International Journal of Machine Learning and Cybernetics, 2023, 14(3): 973- 987.
doi: 10.1007/s13042-022-01676-7
|