1 |
CASEY R, BOYER S, HEALEY P, et al. Optical recognition of chemical graphics[C]//Proceedings of the 2nd International Conference on Document Analysis and Recognition. Washington D. C., USA: IEEE Press, 1993: 627-631.
|
2 |
IBISON P, JACQUOT M, KAM F, et al. Chemical literature data extraction: the CLiDE project. Journal of Chemical Information and Computer Sciences, 1993, 33(3): 338- 344.
doi: 10.1021/ci00013a010
|
3 |
FILIPPOV I V, NICKLAUS M C. Optical structure recognition software to recover chemical information: OSRA, an open source solution. Journal of Chemical Information and Modeling, 2009, 49(3): 740- 743.
doi: 10.1021/ci800067r
|
4 |
曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述. 中国图象图形学报, 2022, 27(6): 1697- 1722.
|
|
CAO J L, LI Y L, SUN H Q, et al. A survey on deep learning based visual object detection. Journal of Image and Graphics, 2022, 27(6): 1697- 1722.
|
5 |
王颖洁, 朱久祺, 汪祖民, 等. 自然语言处理在文本情感分析领域应用综述. 计算机应用, 2022, 42(4): 1011- 1020.
|
|
WANG Y J, ZHU J Q, WANG Z M, et al. Review of applications of natural language processing in text sentiment analysis. Journal of Computer Applications, 2022, 42(4): 1011- 1020.
|
6 |
LI S, WANG Z, LIU Z, et al. MogaNet: multi-order gated aggregation network[C]//Proceedings of the 12th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2024: 1-35.
|
7 |
MERTSCHING B, HUND M, AZIZ Z. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 5998-6008.
|
8 |
WEININGER D. SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31- 36.
doi: 10.1021/ci00057a005
|
9 |
|
10 |
KRENN M, HÄSE F, NIGAM A, et al. Self-referencing embedded strings: a 100% robust molecular string representation. Machine Learning: Science and Technology, 2020, 1(4): 045024.
doi: 10.1088/2632-2153/aba947
|
11 |
STAKER J, MARSHALL K, ABEL R, et al. Molecular structure extraction from documents using deep learning. Journal of Chemical Information and Modeling, 2019, 59(3): 1017- 1029.
doi: 10.1021/acs.jcim.8b00669
|
12 |
|
13 |
CLEVERT D A, LE T, WINTER R, et al. Img2Mol-accurate SMILES recognition from molecular graphical depictions. Chemical Science, 2021, 12(42): 14174- 14181.
doi: 10.1039/D1SC01839F
|
14 |
季秀怡, 李建华. 基于双路注意力机制的化学结构图像识别. 计算机工程, 2020, 46(9): 213- 220.
doi: 10.19678/j.issn.1000-3428.0055881
|
|
JI X Y, LI J H. Chemical structure image recognition based on dual attention mechanism. Computer Engineering, 2020, 46(9): 213- 220.
doi: 10.19678/j.issn.1000-3428.0055881
|
15 |
KHOKHLOV I, KRASNOV L, FEDOROV M V, et al. Image2SMILES: transformer-based molecular optical recognition engine. Chemistry-Methods, 2022, 2(1): e202100069.
doi: 10.1002/cmtd.202100069
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
17 |
VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3156-3164.
|
18 |
RAJAN K, ZIELESNY A, STEINBECK C. DECIMER: towards deep learning for chemical image recognition. Journal of Cheminformatics, 2020, 12(1): 65.
doi: 10.1186/s13321-020-00469-w
|
19 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
20 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-12-20]. https://arxiv.org/abs/1412.3555.
|
21 |
RAJAN K, ZIELESNY A, STEINBECK C. DECIMER 1.0: deep learning for chemical image recognition using transformers. Journal of Cheminformatics, 2021, 13(1): 61.
doi: 10.1186/s13321-021-00538-8
|
22 |
TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Cambridge, USA: MIT Press, 2019: 6105-6114.
|
23 |
RAJAN K, BRINKHAUS H O, AGEA M I, et al. DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications. Nature Communications, 2013, 14(1): 5045- 5062.
|
24 |
TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning. Cambridge, USA: MIT Press, 2021: 10096-10106.
|
25 |
XU Z, LI J, YANG Z, et al. SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer. Journal of Cheminformatics, 2022, 14(1): 41.
doi: 10.1186/s13321-022-00624-5
|
26 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
27 |
QIAN Y, GUO J, TU Z, et al. MolScribe: robust molecular structure recognition with image-to-graph generation. Journal of Chemical Information and Modeling, 2023, 63(7): 1925- 1934.
doi: 10.1021/acs.jcim.2c01480
|
28 |
RAJAN K, STEINBECK C, ZIELESNY A. Performance of chemical structure string representations for chemical image recognition using transformers. Digital Discovery, 2022, 1(2): 84- 90.
doi: 10.1039/D1DD00013F
|
29 |
KIM S, CHEN J, CHENG T J, et al. PubChem in 2021: new data content and improved Web interfaces. Nucleic Acids Research, 2021, 49(1): 1388- 1395.
URL
|
30 |
WILLIGHAGEN E L, MAYFIELD J W, ALVARSSON J, et al. The chemistry development kit v2.0: atom typing, depiction, molecular formulas, and substructure searching. Journal of Cheminformatics, 2017, 9(1): 33.
doi: 10.1186/s13321-017-0220-4
|
31 |
BRINKHAUS H O, RAJAN K, ZIELESNY A, et al. RanDepict: random chemical structure depiction generator. Journal of Cheminformatics, 2022, 14(1): 31.
doi: 10.1186/s13321-022-00609-4
|