1 |
HOSSEINI M J, HAJISHIRZI H, ETZIONI O, et al. Learning to solve arithmetic word problems with verb categorization[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 523-533.
|
2 |
LIGUDA C, PFEIFFER T. Modeling math word problems with augmented semantic networks[C]∥Proceedings of International Conference on Application of Natural Language to Information Systems. Berlin, Germany: Springer, 2012: 247-252.
|
3 |
SUNDARAM S S, KHEMANI D. Natural language processing for solving simple word problems[C]∥Proceedings of the 12th International Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 394-402.
|
4 |
KONCEL-KEDZIORSKI R, HAJISHIRZI H, SABHARWAL A, et al. Parsing algebraic word problems into equations. Transactions of the Association for Computational Linguistics, 2015, 3, 585- 597.
doi: 10.1162/tacl_a_00160
|
5 |
HU R H, ANDREAS J, ROHRBACH M, et al. Learning to reason: end-to-end module networks for visual question answering[C]∥Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 804-813.
|
6 |
CHIANG T R, CHEN Y N. Semantically-aligned equation generation for solving and reasoning math word problems[C]∥Proceedings of the 2019 Conference of the North. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2656-2668.
|
7 |
HUANG S F, WANG J W, XU J, et al. Recall and learn: a memory-augmented solver for math word problems[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2109.13112.
|
8 |
LIANG Z W, ZHANG J P, ZHANG X L. Analogical math word problems solving with enhanced problem-solution association[C]∥Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 9454-9464.
|
9 |
KUSHMAN N, ARTZI Y, ZETTLEMOYER L, et al. Learning to automatically solve algebra word problems[C]∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2014: 271-281.
|
10 |
ROY S, ROTH D. Solving general arithmetic word problems[C]∥Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1743-1752.
|
11 |
WANG Y, LIU X J, SHI S M. Deep neural solver for math word problems[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 845-854.
|
12 |
LIANG Z W, ZHANG J P, WANG L, et al. MWP-BERT: numeracy-augmented pre-training for math word problem solving[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2107.13435.
|
13 |
RIBEIRO N. Reasoning and structured explanations in natural language via analogical and neural learning[D]. Chicago, USA: Northwestern University, 2023.
|
14 |
GOLDBERG Y, LEVY O. word2vec Explained: deriving Mikolov et al. 's negative-sampling word-embedding method[EB/OL]. [2024-02-14]. http://arxiv.org/abs/1402.3722.
|
15 |
|
16 |
JIE Z M, LI J R, LU W. Learning to reason deductively: math word problem solving as complex relation extraction[C]∥Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 5944-5955.
|
17 |
WANG Y, LIU X J, SHI S M. Deep neural solver for math word problems[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 845-854.
|
18 |
XIE Z P, SUN S C. A goal-driven tree-structured neural model for math word problems[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence. Stroudsburg, USA: Association for Computational Linguistics, 2019: 5299-5305.
|
19 |
LIANG Z W, ZHANG X L. Solving math word problems with teacher supervision[C]∥Proceedings of the 30th International Joint Conference on Artificial Intelligence. Stroudsburg, USA: Association for Computational Linguistics, 2021: 3522-3528.
|
20 |
ZHANG J P, WANG L, LEE R K W, et al. Graph-to-tree learning for solving math word problems[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 3928-3937.
|
21 |
肖菁, 何岱俊, 曹阳. 一种自动求解数学应用题的双路文本编码器. 华南师范大学学报(自然科学版), 2023, 55(1): 36- 44.
URL
|
|
XIAO J, HE D J, CAO Y. A dual channel text encoder for solving math word problems. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 36- 44.
URL
|
22 |
黄林嘉, 肖菁, 曹阳. 一种求解数学应用题的多粒度图神经网络编码器. 中文信息学报, 2023, 37(2): 148- 157.
URL
|
|
HUANG L J, XIAO J, CAO Y. Solving math word problems by multi-grained graph neural networks. Journal of Chinese Information Processing, 2023, 37(2): 148- 157.
URL
|
23 |
SHEN J H, YIN Y C, LI L, et al. Generate & Rank: a multi-task framework for math word problems[C]∥Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2269-2279.
|
24 |
LI Z L, ZHANG W X, YAN C, et al. Seeking patterns, not just memorizing procedures: contrastive learning for solving math word problems[C]∥Proceedings of the Findings of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 2486-2496.
|
25 |
JIE Z M, LI J R, LU W. Learning to reason deductively: math word problem solving as complex relation extraction[EB/OL]. [2024-02-14]. http://arxiv.org/abs/2203.10316.
|
26 |
LIU Q Y, GUAN W, LI S J, et al. Tree-structured decoding for solving math word problems[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2370-2379.
|