1 |
高海玲, 王晓东, 章联军, 等. 基于改进3D卷积网络的人体动作识别. 宁波大学学报(理工版), 2023, 36(3): 16- 21.
URL
|
|
GAO H L, WANG X D, ZHANG L J, et al. Human motion recognition based on improved 3D convolution network. Journal of Ningbo University (Natural Science & Engineering Edition), 2023, 36(3): 16- 21.
URL
|
2 |
赵江阳, 张德富. 基于虚拟现实的人体时空域运动信息捕捉仿真. 计算机仿真, 2021, 38(8): 391- 395.
URL
|
|
ZHAO J Y, ZHANG D F. Simulation of human motion information capture in time-space domain based on virtual reality. Computer Simulation, 2021, 38(8): 391- 395.
URL
|
3 |
胡士卓, 周斌, 胡波. 基于多视图融合的3D人体姿态估计. 中南民族大学学报(自然科学版), 2023, 42(1): 103- 110.
URL
|
|
HU S Z, ZHOU B, HU B. 3D human pose estimation based on multi-view fusion. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42(1): 103- 110.
URL
|
4 |
孙冬. 基于无人机控制和最优视图选择的动作捕捉方法. 传感器与微系统, 2021, 40(10): 51- 55.
URL
|
|
SUN D. Motion capture method based on UAV control and optimal view selection. Transducer and Microsystem Technologies, 2021, 40(10): 51- 55.
URL
|
5 |
范云峰. 基于改进ICP算法的人体运动训练动作捕捉模型设计. 九江学院学报(自然科学版), 2022, 37(2): 70-73, 91.
URL
|
|
FAN Y F. Design of motion capture model for human motion training based on improved ICP algorithm. Journal of Jiujiang University (Natural Science Edition), 2022, 37(2): 70-73, 91.
URL
|
6 |
GAO P J, ZHAO D, CHEN X A. Multi-dimensional data modelling of video image action recognition and motion capture in deep learning framework. IET Image Processing, 2020, 14(7): 1257- 1264.
|
7 |
GAO H, XU F, WANG Y, et al. New multi-view human motion capture framework. IET Image Processing, 2020, 14(12): 2668- 2674.
|
8 |
NGUYEN V A, KONG S G. Multimodal feature fusion for illumination-invariant recognition of abnormal human behaviors. Information Fusion, 2023, 100, 101949.
|
9 |
SUBODH RAJ M S, GEORGE S N. A fast non-convex optimization technique for human action recovery from misrepresented 3D motion capture data using trajectory movement and pair-wise hierarchical constraints. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(8): 10779- 10797.
|
10 |
夏寒松, 张力生, 桑春艳. 基于LDTW的动态时间规整改进算法. 计算机工程, 2021, 47(11): 108- 120.
URL
|
|
XIA H S, ZHANG L S, SANG C Y. Improved algorithm of dynamic time warping based on LDTW. Computer Engineering, 2021, 47(11): 108- 120.
URL
|
11 |
魏秋月, 刘雨帆. 基于Kinect和改进DTW算法的动态手势识别. 传感器与微系统, 2021, 40(11): 127- 130.
URL
|
|
WEI Q Y, LIU Y F. Dynamic gesture recognition based on Kinect and improved DTW algorithm. Transducer and Microsystem Technologies, 2021, 40(11): 127- 130.
URL
|
12 |
李浩, 闫国栋, 尹业成, 等. 一种基于改进DTW的人体运动模式感知算法. 中国惯性技术学报, 2022, 30(3): 309- 315.
URL
|
|
LI H, YAN G D, YIN Y C, et al. An algorithm of human movement pattern recognition based on improved DTW. Journal of Chinese Inertial Technology, 2022, 30(3): 309- 315.
URL
|
13 |
杨思佳, 辛山, 刘悦, 等. 基于3D ResNet-LSTM的多视角人体动作识别方法. 电讯技术, 2023, 63(6): 903- 910.
URL
|
|
YANG S J, XIN S, LIU Y, et al. A multi-view human action recognition method based on 3D ResNet-LSTM. Telecommunication Engineering, 2023, 63(6): 903- 910.
URL
|
14 |
|
15 |
ALVANDI A, ARDESTANI V E. Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography, 2023, 64(3): 279- 300.
|
16 |
CAO T, HU J Y, LIU S. Enhanced edge detection for 3D crack segmentation and depth measurement with laser data. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(5): 1- 14.
|
17 |
李三喜, 张坚, 李鑫, 等. 基于小波变换的弓网接触压力特征研究. 铁道学报, 2022, 44(12): 30- 36.
URL
|
|
LI S X, ZHANG J, LI X, et al. Study on pantograph-catenary contact force characteristics based on discrete wavelet transform. Journal of the China Railway Society, 2022, 44(12): 30- 36.
URL
|
18 |
PRANITHA K, KAVYA G. An efficient image compression architecture based on optimized 9/7 wavelet transform with hybrid post processing and entropy encoder module. Microprocessors and Microsystems, 2023, 98, 104821.
|
19 |
SEMENOVA N, SEGREEV K, SLEPNEV A, et al. Non-invasive analysis of blood-brain barrier permeability based on wavelet and machine learning approaches[EB/OL]. [2024-02-05]. https://arxiv.org/abs/2103.05693.
|
20 |
李勇, 赵杰. 一种用于彩色图像分割的GA-K-Means方法. 科学技术与工程, 2020, 20(32): 13309- 13316.
URL
|
|
LI Y, ZHAO J. A method based on GA-K-means for segmentation to color image. Science Technology and Engineering, 2020, 20(32): 13309- 13316.
URL
|
21 |
CAO T, VO C, NGUYEN S, et al. A kernel k-means-based method and attribute selections for diabetes diagnosis. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2020, 24(1): 73- 82.
|
22 |
田志强, 邓春华, 张俊雯. 基于骨骼时序散度特征的人体行为识别算法. 计算机应用, 2021, 41(5): 1450- 1457.
URL
|
|
TIAN Z Q, DENG C H, ZHANG J W. Human behavior recognition algorithm based on skeletal temporal divergence feature. Journal of Computer Applications, 2021, 41(5): 1450- 1457.
URL
|
23 |
李琪, 王向东, 李华. 基于双Kinect传感器的三维人体姿态跟踪方法. 系统仿真学报, 2020, 32(8): 1446- 1454.
URL
|
|
LI Q, WANG X D, LI H. 3D human pose tracking approach based on double Kinect sensors. Journal of System Simulation, 2020, 32(8): 1446- 1454.
URL
|
24 |
陈泯融, 彭俊杰, 曾国强. 基于多流融合网络的3D骨架人体行为识别. 华南师范大学学报(自然科学版), 2023, 55(1): 94- 101.
URL
|
|
CHEN M R, PENG J J, ZENG G Q. 3D skeleton-based human action recognition based on multi-stream fusion network. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 94- 101.
URL
|
25 |
张丽丽, 刘博, 屈乐乐, 等. 基于FMCW雷达的多通道特征融合人体动作识别方法. 电讯技术, 2023, 63(8): 1109- 1116.
URL
|
|
ZHANG L L, LIU B, QU L L, et al. Multi-channel feature fusion for human activity recognition based on FMCW radar. Telecommunication Engineering, 2023, 63(8): 1109- 1116.
URL
|
26 |
崔建伟, 曹尔凡, 陆普东, 等. 基于子动作特征矩阵与DTW算法的手臂动作识别方法. 东南大学学报(自然科学版), 2021, 51(4): 679- 686.
URL
|
|
CUI J W, CAO E F, LU P D, et al. Arm motion recognition method based on sub-motion feature matrix and DTW algorithm. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 679- 686.
URL
|
27 |
郭昕钰, 张飞飞, 吕收. 基于谱估计的方位时间序列匹配算法. 指挥控制与仿真, 2021, 43(3): 34- 39.
URL
|
|
GUO X Y, ZHANG F F, LÜ S. Research on bearing time series matching algorithm based on spectrum estimation. Command Control & Simulation, 2021, 43(3): 34- 39.
URL
|