| 1 |
司法部. "数字法治、智慧司法" 信息化体系建设指导意见. 中国司法, 2018 (11): 108- 112.
|
|
Ministry of Justice . Guiding opinions on information system construction of digital rule of law and smart justice. Justice of China, 2018 (11): 108- 112.
|
| 2 |
LI S , ZHANG H L , YE L , et al. MANN: a multichannel attentive neural network for legal judgment prediction. IEEE Access, 2019, 7, 151144- 151155.
doi: 10.1109/ACCESS.2019.2945771
|
| 3 |
YANG W M, JIA W J, ZHOU X J, et al. Legal judgment prediction via multi-perspective bi-feedback network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S. l. ]: International Joint Conferences on Artificial Intelligence Organization, 2019: 4085-4091.
|
| 4 |
王文广, 陈运文, 蔡华, 等. 基于混合深度神经网络模型的司法文书智能化处理. 清华大学学报(自然科学版), 2019, 59 (7): 505- 511.
|
|
WANG W G , CHEN Y W , CAI H , et al. Judicial document intellectual processing using hybrid deep neural networks. Journal of Tsinghua University (Science and Technology), 2019, 59 (7): 505- 511.
|
| 5 |
谭红叶, 张博文, 张虎, 等. 面向法律文书的量刑预测方法研究. 中文信息学报, 2020, 34 (3): 107- 114.
|
|
TAN H Y , ZHANG B W , ZHANG H , et al. Automatic sentencing prediction for legal texts. Journal of Chinese Information Processing, 2020, 34 (3): 107- 114.
|
| 6 |
HU Z, LI X, TU C, et al. Few-shot charge prediction with discriminative legal attributes[C]//Proceedings of the 27th International Conference on Computational Linguistics. Washington D.C., USA: IEEE Press, 2018: 487-498.
|
| 7 |
陈文哲, 秦永彬, 黄瑞章, 等. 基于犯罪行为序列的法律条文预测方法. 计算机工程与应用, 2019, 55 (22): 245-249, 264.
|
|
CHEN W Z , QIN Y B , HUANG R Z , et al. Legal text prediction method based on criminal behavior sequence. Computer Engineering and Applications, 2019, 55 (22): 245-249, 264.
|
| 8 |
LIN J Y, SU Q, YANG P C, et al. Semantic-unit-based dilated convolution for multi-label text classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2018: 4554-4564.
|
| 9 |
CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, USA: ACL Press, 2017: 1107-1116.
|
| 10 |
PENG H , LI J X , WANG S Z , et al. Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (6): 2505- 2519.
doi: 10.1109/TKDE.2019.2959991
|
| 11 |
ZHOU Z H . Abductive learning: towards bridging machine learning and logical reasoning. Science China Information Sciences, 2019, 62 (7): 76101.
doi: 10.1007/s11432-018-9801-4
|
| 12 |
金雨澄, 王清钦, 高剑, 等. 基于图深度学习的金融文本多标签分类算法. 计算机工程, 2022, 48 (4): 16- 21.
doi: 10.19678/j.issn.1000-3428.0061221
|
|
JIN Y C , WANG Q Q , GAO J , et al. Multi-label financial text classification algorithm based on graph deep learning. Computer Engineering, 2022, 48 (4): 16- 21.
doi: 10.19678/j.issn.1000-3428.0061221
|
| 13 |
ZHANG P F, WU H Y, XU X S. A dual-CNN model for multi-label classification by leveraging co-occurrence dependencies between labels[C]//Proceedings of the 18th Pacific-Rim Conference on Multimedia. Berlin, Germany: Springer, 2018: 315-324.
|
| 14 |
LEE C W, FANG W, YEH C K, et al. Multi-label zero-shot learning with structured knowledge graphs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1576-1585.
|
| 15 |
XIAO L, HUANG X, CHEN B L, et al. Label-specific document representation for multi-label text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: ACL Press, 2019: 466-475.
|
| 16 |
孙伟. 基于注意力和图卷积的多标签文本分类研究[D]. 南京: 南京大学, 2020.
|
|
SUN W. Multi-label text classification based-on attention mechanism and graph convolution network[D]. Nanjing: Nanjing University, 2020. (in Chinese)
|
| 17 |
ZHU K, WU J X. Residual attention: a simple but effective method for multi-label recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 184-193.
|
| 18 |
LI J L , LI P P , HU X G , et al. Learning common and label-specific features for multi-label classification with correlation information. Pattern Recognition, 2022, 121, 108259.
doi: 10.1016/j.patcog.2021.108259
|
| 19 |
CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 522-531.
|
| 20 |
CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 5172-5181.
|
| 21 |
ZHOU J, MA C P, LONG D K, et al. Hierarchy-aware global model for hierarchical text classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2020: 1106-1117.
|
| 22 |
PAL A, SELVAKUMAR M, SANKARASUBBU M. MAGNET: multi-label text classification using attention-based graph neural network[C]//Proceedings of the 12th International Conference on Agents and Artificial Intelligence. Washington D.C., USA: IEEE Press, 2020: 494-505.
|
| 23 |
高珊, 李世杰, 蔡志平. 基于深度学习的中文文本分类综述. 计算机工程与科学, 2024, 46 (4): 684- 692.
|
|
GAO S , LI S J , CAI Z P . A survey of Chinese text classification based on deep learning. Computer Engineering & Science, 2024, 46 (4): 684- 692.
|
| 24 |
WANG G , DU Y J , JIANG Y R , et al. Label-text bi-attention capsule networks model for multi-label text classification. Neurocomputing, 2024, 588, 127671.
doi: 10.1016/j.neucom.2024.127671
|
| 25 |
HUANG Y X, DAI W Z, YANG J, et al. Semi-supervised abductive learning and its application to theft judicial sentencing[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2020: 1070-1075.
|
| 26 |
李锦烨, 黄瑞章, 秦永彬, 等. 基于反绎学习的裁判文书量刑情节识别. 计算机应用, 2022, 42 (6): 1802- 1807.
|
|
LI J Y , HUANG R Z , QIN Y B , et al. Recognition of sentencing circumstances in adjudication documents based on abductive learning. Journal of Computer Applications, 2022, 42 (6): 1802- 1807.
|
| 27 |
最高人民法院. 最高人民法院关于实施修订后的《关于常见犯罪的量刑指导意见》的通知. 中华人民共和国最高人民法院公报, 2017 (11): 5- 13.
|
|
The Supreme People's Court . Notice of the Supreme People's Court on the implementation of the revised "sentencing guidance opinions on common crimes". Gazette of the Supreme People's Court of the People's Republic of China, 2017 (11): 5- 13.
|
| 28 |
SOUREK G , ASCHENBRENNER V , ZELEZNY F , et al. Lifted relational neural networks: efficient learning of latent relational structures. Journal of Artificial Intelligence Research, 2018, 62, 69- 100.
doi: 10.1613/jair.1.11203
|