| 1 |
TIAN Y, CHANG J X, NIU Y N, et al. When multi-level meets multi-interest: a multi-grained neural model for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1632-1641.
|
| 2 |
SONG S , MEI T . When multimedia meets fashion. IEEE Multimedia, 2018, 25 (3): 102- 108.
doi: 10.1109/MMUL.2018.2875860
|
| 3 |
YIN R P, LI K, LU J, et al. Enhancing fashion recommendation with visual compatibility relationship[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3434-3440.
|
| 4 |
DING Y J, MA Y S, WONG W K, et al. Leveraging two types of global graph for sequential fashion recommendation[C]//Proceedings of the 2021 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2021: 73-81.
|
| 5 |
DING Y J , MA Y S , WONG W K , et al. Modeling instant user intent and content-level transition for sequential fashion recommendation. IEEE Transactions on Multimedia, 2022, 24, 2687- 2700.
doi: 10.1109/TMM.2021.3088281
|
| 6 |
MOBASHER B, DAI H H, LUO T, et al. Using sequential and non-sequential patterns in predictive Web usage mining tasks[C]//Proceedings of the IEEE International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2002: 669-672.
|
| 7 |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010: 811-820.
|
| 8 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representations. New York, USA: ACM Press, 2016: 1-10.
|
| 9 |
DUAN J S , ZHANG P F , QIU R H , et al. Long short-term enhanced memory for sequential recommendation. World Wide Web, 2023, 26 (2): 561- 583.
doi: 10.1007/s11280-022-01056-9
|
| 10 |
罗旭, 汪海涛, 姜瑛, 等. 基于动态组合嵌入的轻量级序列推荐算法. 中文信息学报, 2023, 37 (8): 115-124, 149.
doi: 10.3969/j.issn.1003-0077.2023.08.013
|
|
LUO X , WANG H T , JIANG Y , et al. Dynamic compositional embedding based lightweight sequential recommendation. Journal of Chinese Information Processing, 2023, 37 (8): 115-124, 149.
doi: 10.3969/j.issn.1003-0077.2023.08.013
|
| 11 |
李盼, 解庆, 李琳, 等. 知识增强的图神经网络序列推荐模型. 计算机工程, 2023, 49 (2): 70- 80.
doi: 10.19678/j.issn.1000-3428.0063844
|
|
LI P , XIE Q , LI L , et al. Knowledge-enhanced graph neural network model for sequential recommendation. Computer Engineering, 2023, 49 (2): 70- 80.
doi: 10.19678/j.issn.1000-3428.0063844
|
| 12 |
TANG J, WANG K. Personalized Top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2018: 565-573.
|
| 13 |
郑楠, 过弋, 李智强, 等. 融合交互注意力和参数自适应的商品会话推荐. 中文信息学报, 2022, 36 (11): 131- 139.
doi: 10.3969/j.issn.1003-0077.2022.11.013
|
|
ZHENG N , GUO Y , LI Z Q , et al. Session-based commodity recommendation through interactive attention and parameter self-adaption. Journal of Chinese Information Processing, 2022, 36 (11): 131- 139.
doi: 10.3969/j.issn.1003-0077.2022.11.013
|
| 14 |
PENG D L , LIU R , LU J , et al. Unsupervised multi-modal modeling of fashion styles with visual attributes. Applied Soft Computing, 2022, 115, 108214.
doi: 10.1016/j.asoc.2021.108214
|
| 15 |
SONG X M, HAN X J, LI Y K, et al. GP-BPR: personalized compatibility modeling for clothing matching[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 320-328.
|
| 16 |
杨兴耀, 马帅, 张祖莲, 等. 基于偏好感知的去噪图卷积网络社交推荐. 计算机工程, 2024, 50 (10): 154- 163.
doi: 10.19678/j.issn.1000-3428.0068748
|
|
YANG X Y , MA S , ZHANG Z L , et al. Social recommendation based on preference-aware denoising graph convolutional networks. Computer Engineering, 2024, 50 (10): 154- 163.
doi: 10.19678/j.issn.1000-3428.0068748
|
| 17 |
CHANG J X, GAO C, ZHENG Y, et al. Sequential recommendation with graph neural networks[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 378-387.
|
| 18 |
CHEN T, YIN H Z, CHEN H X, et al. AIR: attentional intention-aware recommender systems[C]//Proceedings of the IEEE 35th International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2019: 304-315.
|
| 19 |
MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2015: 43-52.
|
| 20 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feed-back[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York, USA: ACM Press, 2009: 452-461.
|
| 21 |
WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for NextBasket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2015: 403-412.
|
| 22 |
WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence/the 31st Innovative Applications of Artificial Intelligence Conference/the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 346-353.
|
| 23 |
ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2388-2399.
|
| 24 |
KANG W C, WAN M T, MCAULEY J. Recommendation through mixtures of heterogeneous item relationships[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 1143-1152.
|
| 25 |
XU R C, WANG J F, LI Y. Cross-intent graph contrastive learning for fashion sequential recommendation[C]//Proceedings of the 28th International Conference on Automation and Computing (ICAC). Washington D.C., USA: IEEE Press, 2023: 1-6.
|