[1] 杨旭,王锐,张涛.面向无人机集群路径规划的智能优化
算法综述[J].控制理论与应用,2020,37(11):2291-2302.
(YANG X, WANG R, ZHANG T. Review of unmanned
aerial vehicle swarm path planning based on intelligent
optimization[J]. Control Theory and Applications, 2020,
37(11): 2291-2302.)
[2] 韩亮,任章,董希旺,等.多无人机协同控制方法及应用研
究[J].导航定位与授时,2018,5(4):1-7. (HAN L, REN Z,
DONG X W, et al. Research on Cooperative Control
Method and Application for Multiple Unmanned Aerial
Vehicles [J]. Navigation Positioning and Timing, 2018,
5(4): 1-7.)
[3] 马培蓓,吕超,雷明,等.多无人飞行器协同航迹规划与编
队控制[M]. 北京:国防工业出版社,2023:1-9. (MA P B,
LV C, LEI M, et al. Cooperative Path Planning and
Formation Control of Multiple Unmanned Aerial Vehicles
[M]. Beijing: National Defense Industry Press, 2023: 1-9.)
[4] XIANG Y, YOU M Z. Sense and avoid technologies with
applications to unmanned aircraft systems: Review and
prospects[J]. Progress in Aerospace Sciences, 2015,
74(2015): 152-166.
[5] 刘玄冰,周绍磊,肖支才,等.无人机避障方法研究综述[J].
兵器装备工程学报,2022,43(5):40-47. (LIU X B, ZHOU
S L, XIAO Z C, et al. Review on UAV obstacle avoidance
methods[J]. Journal of Ordnance Equipment Engineering,
2022, 43(5): 40-47.)
[6] 杜云,彭瑜,邵士凯,等.基于改进粒子群优化的多无人机
协同航迹规划[J]. 科 学 技 术 与 工 程 ,
2020,20(32):13258-13264. (DU Y, PENG Y, SHAO S K,
et al. Cooperative path planning of multi-unmanned aerial
vehicle based on improved particle swarm optimization[J].
Science Technology and Engineering, 2020, 20(32):
13258-13264.)
[7] LI H, FU Y, ELGAZZAR K, et al. Path planning for
multiple
unmanned aerial vehicles using genetic
algorithms[C]// 2009 Canadian Conference on Electrical
and Computer Engineering. Labrador: IEEE, 2009:
1129-1132.
[8] 韩子硕,张莉,范喜全,等.基于改进人工蜂群算法的无人
机三维航迹规划[J].无线电工程,2025, 55(1):196-203.
(HAN Z S, ZHANG L, FAN X Q, et al. UVA 3D Route
Planning Based on Improved Artificial Bee Colony
Algorithm[J]. Radio Engineering, 2025,55(1):196-203. )
[9] 李晓辉,苗苗,冉保健,等.基于改进 A*算法的无人机避障
路径规划[J]. 计算机系统应用, 2021,30(2):255-259. (LI
X H, MIAO M, RAN B J, et al. Obstacle Avoidance Path
Planning for UAV Based on Improved A* Algorithm[J].
Computer Systems and Applications, 2021, 30(2):
255-259.)
[10] 秦明星,王忠,李海龙,等.基于分布式模型预测的无人机
编队避障控制[J]. 北 京 航 空 航 天 大 学学
报,2024,50(6):1969-1981. (QIN M X, WANG Z, LI H L,
et al. Obstacle avoidance control of UAV formation based
on distributed model prediction[J]. Journal of Beijing
University of Aeronautics and Astronautics, 2024, 50(6):
1969-1981.)
[11] DAI L, CAO Q, XIA Y Q, et al. Distributed MPC for
formation of multi-agent systems with collision avoidanceand obstacle avoidance [J]. Journal of the Franklin
Institute, 2017, 354(2017): 2068-2085.
[12] WANG C, WANG J, SHEN Y, et al. Autonomous
Navigation
of
Environments:
UAVs in Large-Scale Complex
A Deep Reinforcement Learning
Approach[J]. IEEE Transactions on Vehicular Technology,
2019, 68(3): 2124-2136.
[13] 李诗琪.多智能体无人机协同防撞策略研究[D].沈阳:沈
阳航空航天大学,2022. (LI S Q. Research on cooperative
collision avoidance policy of multi-agent UAVs[D].
Shenyang: Shenyang Aerospace University, 2022.)
[14] WANG F, ZHU X P, ZHOU Z, et al. Deep-reinforcement-
learning-based UAV autonomous navigation and collision
avoidance in unknown environments[J]. Chinese Journal
of Aeronautics, 2024, 37(3): 237-257.
[15] KHATIB O. Real-time obstacle avoidance for
manipulators and mobile robots[J]. The International
Journal of Robotics Research, 1986, 5(1): 90–98.
[16] GE S S, CUI Y J. New potential functions for mobile robot
path planning[J]. IEEE Transactions on Robotics and
Automation, 2000, 16(5): 615-620.
[17] 涂柯,侯宏录,苏炜.改进人工势场法的无人机避障路径
规划[J].西安工业大学学报,2022,42(2):170-177. (TU K,
HOU H L, SU W. Obstacle avoidance Path Planning of
UAV Based on Improved Artificial Potential Field
Method[J]. Journal of Xi’an Technological University,
2022, 42(2): 170-177.)
[18] 徐小强,王明勇,冒燕.基于改进人工势场法的移动机器
人路径规划[J].计算机应用,2020,40(12):3508-3512. (XU
X Q, WANG M Y, MAO Y. Path planning of mobile robot
based on improved artificial potential field method[J].
Journal of Computer Applications, 2020, 40(12):
3508-3512.)
[19] WU X J, WU S Y, YUAN S, et al. Multi-UAV Path
Planning with Collision Avoidance in 3D Environment
Based on Improved APF[C]// 2023 9th International
Conference on Control, Automation and Robotics. Beijing:
IEEE, 2023: 221-226.
[20] PAN Z H, ZHANG C X, XIA Y Q, et al. An Improved
Artificial Potential Field Method for Path Planning and
Formation Control of the Multi-UAV Systems[J]. IEEE
Transactions on Circuits and Systems-II: Express Briefs,
2022, 69(3): 1129-1133.
[21] SUN J Y, TANG J, LAO S Y. Collision Avoidance for
Cooperative UAVs With Optimized Artificial Potential
Field Algorithm[J]. IEEE Access, 2017, 5: 18382-18390.
[22] 熊超,解武杰,董文瀚.基于碰撞锥改进人工势场的无人
机避障路径规划[J].计算机工程,2018,44(9):314-320.
(XIONG C, XIE W J, DONG W H. Obstacle avoidance
Path Planning for UAV Based on Artificial Potential Field
Improved by Collision Cone[J]. Computer Engineering,
2018, 44(9): 314-320.)
[23] 曹馨文,时宏伟.自适应斥力系数的无人机路径规划[J].
计算机系统应用,2023,32(5):36-44. (CAO X W, SHI H W.
Path Planning of UAV Based on Adaptive Repulsion
Coefficient[J]. Computer Systems and Applications, 2023,
32(5): 36-44.)
[24] 齐斌凯.无人机编队控制技术研究[D].长春:长春理工大
学,2022. (QI B K. Research on UAV formation control
technology[D]. Changchun: Changchun University of
Science and Technology, 2022.)
[25] 杨健.无人机集群系统空域冲突消解方法研究[D].长沙:
国防科学技术大学,2016. (YANG J. Study on the
Airspace Conflict Resolution Problem of Unmanned
Aerial Vehicle Swarm Systems [D]. Changsha: School of
National University of Defense Technology, 2016.)
[26] 郭华,郭小和.改进速度障碍法的无人机局部路径规划算
法[J].航空学报,2023,44(11):266-276. (GUO H, GUO X H.
Local path planning algorithm for UAV based on improved
velocity obstacle method[J]. Acta Aeronautica et
Astronautica Sinica, 2023, 44(11): 266-276.)
[27] 黄洋.面向无人机集群的防撞方法研究[D].长沙:国防科
学技术大学, 2019. (HUANG Y. Research on Collision
Avoidance Method for UAV Cluster[D]. Changsha: School
of National University of Defense Technology, 2019.)
[28] 万宇.基于策略协同的无人机编队控制与防撞方法研究
[D].长沙:国防科学技术大学,2019. (WAN Y. Research on
method of control and collision avoidance for UAV
formation based on strategy coordination [D]. Changsha:
School of National University of Defense Technology,
2019.)
|