作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 1-17. doi: 10.19678/j.issn.1000-3428.0253230

• 热点与综述 • 上一篇    下一篇

大模型工具学习: 方法、作用与机制

廖牛语1, 田沄1,2,*(), 李岩松1, 薛海峰2, 杜长坤3, 张国华3   

  1. 1. 北京师范大学人工智能学院, 北京 100875
    2. 数字化学习技术集成与应用教育部工程研究中心, 北京 100068
    3. 航天科工集团智能科技研究院有限公司, 北京 100043
  • 收稿日期:2025-10-31 修回日期:2025-12-02 出版日期:2025-12-15 发布日期:2025-12-16
  • 通讯作者: 田沄
  • 基金资助:
    国家自然科学基金面上项目(62172047); 数字化学习技术集成与应用教育部工程研究中心创新基金(1311006); 中央高校基本科研业务费专项资金(2243200003)

Tool Learning with Large Language Models: Methods, Functions, and Mechanisms

LIAO Niuyu1, TIAN Yun1,2,*(), LI Yansong1, XUE Haifeng2, DU Changkun3, ZHANG Guohua3   

  1. 1. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
    2. Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100068, China
    3. Aerospace Science and Industry Group Intelligent Technology Research Institute Co., Ltd., Beijing 100043, China
  • Received:2025-10-31 Revised:2025-12-02 Online:2025-12-15 Published:2025-12-16
  • Contact: TIAN Yun

摘要:

近年来, 以GPT、LLaMA、Qwen、DeepSeek等为代表的大模型在自然语言处理、计算机视觉及多模态等领域取得了突破性进展。然而, 受限于其推理机制、参数规模和固有的训练数据知识等因素, 这些模型在处理复杂任务、解答专业领域问题及生成时效性内容时, 常出现答案不准确乃至事实性偏差幻觉等问题, 严重制约了其在高可靠性场景中的应用。为突破上述能力瓶颈, 工具学习范式应运而生并迅速成为研究热点, 其核心旨在使大模型理解并使用外部工具以完成特定任务。通过调用数据库、搜索引擎、数学工具等外部工具, 大模型能够超越自身参数化知识, 提升其推理、决策和执行能力, 缓解幻觉问题。本文系统综述了大模型工具学习的发展脉络与技术进展, 剖析了工具对大模型能力的扩展, 梳理了从上下文学习到微调训练的工具调用机制, 进而探讨了工具调用性能优化、自适应工具生成等关键问题, 分析了大模型工具调用的测评方法, 最后总结了当前工具学习面临的挑战并对大模型工具学习未来发展方向进行展望。

关键词: 大模型, 工具学习, 使用范式, 工具调用机制, 工具学习优化

Abstract:

In recent years, Large Language Models (LLMs) such as GPT, LLaMA, Qwen, and DeepSeek, have achieved significant breakthroughs in natural language processing, computer vision, multimodal learning, and other fields. However, constrained by factors such as their reasoning mechanisms, parameter scales, and the inherent knowledge contained within their training data, these models often suffer from issues like ″hallucinations″—characterized by inaccurate answers and even factual deviations—when handling complex tasks, addressing questions from professional domains, or generating time-sensitive content. These limitations severely hinder their application in high-reliability scenarios. The ″tool learning″ paradigm is attracting increasing attention as a promising solution to these capability bottlenecks. Its primary objective is to enable LLMs to understand and utilize external tools to complete specific tasks. By invoking external tools, such as databases, search engines, and mathematical tools, LLMs can transcend their parameterized knowledge; enhance their reasoning, decision-making, and execution capabilities; and mitigate hallucination problems. This paper systematically reviews the development context and technical advancements in LLM tool learning, analyzes the expansion of LLM capabilities through tools, summarizes tool invocation mechanisms ranging from in-context learning to fine-tuning training, and discusses key issues including performance optimization and adaptive tool generation. The paper also analyzes evaluation methods for LLM tool invocation, summarizes the current challenges in tool learning, and outlines future research directions.

Key words: Large Language Model (LLM), tool learning, usage paradigm, tool invocation mechanism, tool learning optimization