| 1 |
陈良臣, 高曙, 刘宝旭, 等. 网络流量异常检测中的维数约简研究. 计算机工程, 2020, 46 (2): 11- 20.
doi: 10.19678/j.issn.1000-3428.0056532
|
|
CHEN L C , GAO S , LIU B X , et al. Research on dimensionality reduction in network traffic anomaly detection. Computer Engineering, 2020, 46 (2): 11- 20.
doi: 10.19678/j.issn.1000-3428.0056532
|
| 2 |
|
| 3 |
JIN Z G , ZHOU J Y , LI B , et al. FL-ⅡDS: a novel federated learning-based incremental intrusion detection system. Future Generation Computer Systems, 2024, 151, 57- 70.
doi: 10.1016/j.future.2023.09.019
|
| 4 |
侯剑, 鲁辉, 刘方爱, 等. 加密恶意流量检测及对抗综述. 软件学报, 2024, 35 (1): 333- 355.
|
|
HOU J , LU H , LIU F A , et al. Detection and countermeasure of encrypted malicious traffic: a survey. Journal of Software, 2024, 35 (1): 333- 355.
|
| 5 |
GUO Y . A review of machine learning-based zero-day attack detection: challenges and future directions. Computer Communications, 2023, 198, 175- 185.
doi: 10.1016/j.comcom.2022.11.001
|
| 6 |
金志刚, 陈旭阳, 武晓栋, 等. 增量式入侵检测研究综述. 信息网络安全, 2024, 24 (12): 1819- 1830.
|
|
JIN Z G , CHEN X Y , WU X D , et al. A review of incremental intrusion detection. Netinfo Security, 2024, 24 (12): 1819- 1830.
|
| 7 |
姚叶鹏. 面向网络流量的未知特征攻击智能发现技术研究[D]. 北京: 中国科学院大学, 2019.
|
|
YAO Y P. Research on intelligent discovery technology of unknown characteristic attacks for network traffic[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
|
| 8 |
|
| 9 |
WU H , LI W N , CHEN X Y , et al. Batch classifier with adaptive update for backbone traffic classification. Computer Communications, 2023, 202, 57- 72.
doi: 10.1016/j.comcom.2023.02.013
|
| 10 |
XU H T , HAN S Y , LI X H , et al. Anomaly traffic detection based on communication-efficient federated learning in space-air-ground integration network. IEEE Transactions on Wireless Communications, 2023, 22 (12): 9346- 9360.
doi: 10.1109/TWC.2023.3270179
|
| 11 |
RASTEH A , DELPECH F , AGUILAR-MELCHOR C , et al. Encrypted Internet traffic classification using a supervised spiking neural network. Neurocomputing, 2022, 503, 272- 282.
doi: 10.1016/j.neucom.2022.06.055
|
| 12 |
PERDICES D , DE VERGARA J E L , GONZÁLEZ I , et al. Web browsing privacy in the deep learning era: beyond VPNs and encryption. Computer Networks, 2023, 220, 109471.
doi: 10.1016/j.comnet.2022.109471
|
| 13 |
ROY S , SHAPIRA T , SHAVITT Y . Fast and lean encrypted Internet traffic classification. Computer Communications, 2022, 186, 166- 173.
doi: 10.1016/j.comcom.2022.02.003
|
| 14 |
LIN K D , XU X L , GAO H H . TSCRNN: a novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of ⅡoT. Computer Networks, 2021, 190, 107974.
doi: 10.1016/j.comnet.2021.107974
|
| 15 |
NOVO C, SILVA J M C, MORLA R. An outlook on using packet sampling in flow-based C2 TLS malware traffic detection[C]// Proceedings of the 12th International Conference on Network of the Future (NoF). Washington D.C., USA: IEEE Press, 2021: 1-5.
|
| 16 |
LUXEMBURK J , AČG EJKA T . Fine-grained TLS services classification with reject option. Computer Networks, 2023, 220, 109467.
doi: 10.1016/j.comnet.2022.109467
|
| 17 |
SUN Z Q, SUN Y, DU Y, et al. Persistent sketch: a memory-efficient and robust algorithm for finding top-k persistent flows[C]// Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing. Berlin, Germany: Springer, 2024: 19-38.
|
| 18 |
MILAJERDI S M, GJOMEMO R, ESHETE B, et al. HOLMES: real-time APT detection through correlation of suspicious information flows[C]// Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2019: 1137-1152.
|
| 19 |
GUO Z J, LIU R J, LIN Y J, et al. Cluster-TRnet: jointed model for real-time traffic identification with high accuracy[C]// Proceedings of Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. Berlin, Germany: Springer, 2022: 1161-1172.
|
| 20 |
LU Y Y , CHAI S C , SUO Y H , et al. Intrusion detection for industrial Internet of Things based on deep learning. Neurocomputing, 2024, 564, 126886.
doi: 10.1016/j.neucom.2023.126886
|
| 21 |
|
| 22 |
DUAN H, YUAN X, WANG C. Lightbox: SGX-assisted secure network functions at near-native speed[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 2351-2367.
|
| 23 |
WANG J , HAO S R , HU H X , et al. S-blocks: lightweight and trusted virtual security function with SGX. IEEE Transactions on Cloud Computing, 2022, 10 (2): 1082- 1099.
doi: 10.1109/TCC.2020.2985045
|
| 24 |
YAO J , MENG X Y , ZHENG Y F , et al. Privacy-preserving content-based similarity detection over in-the-cloud middleboxes. IEEE Transactions on Cloud Computing, 2023, 11 (2): 1854- 1870.
doi: 10.1109/TCC.2022.3169329
|
| 25 |
SHERRY J , LAN C , POPA R A , et al. BlindBox: deep packet inspection over encrypted traffic. ACM SIGCOMM Computer Communication Review, 2015, 45 (4): 213- 226.
doi: 10.1145/2829988.2787502
|
| 26 |
NING J T, POH G S, LOH J C, et al. PrivDPI: privacy-preserving encrypted traffic inspection with reusable obfuscated rules[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 1657-1670.
|
| 27 |
KIM J, CAMTEPE S, BAEK J, et al. P2DPI: practical and privacy-preserving deep packet inspection[C]//Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2021: 135-146.
|
| 28 |
NING J T, HUANG X Y, POH G S, et al. Pine: enabling privacy-preserving deep packet inspection on TLS with rule-hiding and fast connection establishment[C]//Proceedings of ESORICS'20. Berlin, Germany: Springer, 2020: 3-22.
|
| 29 |
WENG Z Q , CHEN T M , ZHU T T , et al. TLSmell: direct identification on malicious HTTPs encryption traffic with simple connection-specific indicators. Computer Systems Science and Engineering, 2021, 37 (1): 105- 119.
doi: 10.32604/csse.2021.015074
|
| 30 |
GARG S , KAUR K , KUMAR N , et al. Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in SDN: a social multimedia perspective. IEEE Transactions on Multimedia, 2019, 21 (3): 566- 578.
doi: 10.1109/TMM.2019.2893549
|
| 31 |
MEGHDOURI F, VAZQUEZ F I, ZSEBY T. Cross-layer profiling of encrypted network data for anomaly detection[C]//Proceedings of the IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). Washington D.C., USA: IEEE Press, 2020: 469-478.
|
| 32 |
LIU J Y , ZENG Y Z , SHI J Y , et al. MalDetect: a structure of encrypted malware traffic detection. Computers, Materials & Continua, 2019, 60 (2): 721- 739.
|
| 33 |
SHEKHAWAT A S , DI TROIA F , STAMP M . Feature analysis of encrypted malicious traffic. Expert Systems with Applications, 2019, 125, 130- 141.
doi: 10.1016/j.eswa.2019.01.064
|
| 34 |
邹福泰, 俞汤达, 许文亮. 基于隐马尔可夫模型的加密恶意流量检测. 软件学报, 2022, 33 (7): 2683- 2698.
|
|
ZOU F T , YU T D , XU W L . Encrypted malicious traffic detection based on hidden Markov model. Journal of Software, 2022, 33 (7): 2683- 2698.
|
| 35 |
BAZUHAIR W, LEE W. Detecting malign encrypted network traffic using perlin noise and convolutional neural network[C]//Proceedings of the 10th Annual Computing and Communication Workshop and Conference (CCWC). Washington D.C., USA: IEEE Press, 2020: 200-206.
|
| 36 |
谷勇浩, 徐昊, 张晓青. 基于多粒度表征学习的加密恶意流量检测. 计算机学报, 2023, 46 (9): 1888- 1899.
|
|
GU Y H , XU H , ZHANG X Q . Multi-granularity representation learning for encrypted malicious traffic detection. Chinese Journal of Computers, 2023, 46 (9): 1888- 1899.
|
| 37 |
JAIN A , JAIN G , PALLAVI R , et al. Stacked autoencoder based neural network for identifying malicious traffic in SDN. International Journal of Intelligent Systems and Applications in Engineering, 2023, 11 (8): 206- 214.
|
| 38 |
ACETO G , CIUONZO D , MONTIERI A , et al. MIMETIC: mobile encrypted traffic classification using multimodal deep learning. Computer Networks, 2019, 165, 106944.
doi: 10.1016/j.comnet.2019.106944
|
| 39 |
LIU J Y , WANG L T , HU W , et al. Spatial-temporal feature with dual-attention mechanism for encrypted malicious traffic detection. Security and Communication Networks, 2023, 2023 (1): 7117863.
|
| 40 |
ALAZZAM H , SHARIEH A , SABRI K E . A lightweight intelligent network intrusion detection system using OCSVM and Pigeon inspired optimizer. Applied Intelligence, 2022, 52 (4): 3527- 3544.
doi: 10.1007/s10489-021-02621-x
|
| 41 |
ALKHAMAISEH A, ALKASASSBEH M, AL-SARAIREH J. Unknown attack detection based on multistage one-class SVM[C]//Proceedings of the International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA). Washington D.C., USA: IEEE Press, 2022: 1-9.
|
| 42 |
PU G , WANG L J , SHEN J , et al. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology, 2021, 26 (2): 146- 153.
doi: 10.26599/TST.2019.9010051
|
| 43 |
KHRAISAT A , GONDAL I , VAMPLEW P , et al. Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine. Electronics, 2020, 9 (1): 173.
doi: 10.3390/electronics9010173
|
| 44 |
HINDY H , ATKINSON R , TACHTATZIS C , et al. Utilising deep learning techniques for effective zero-day attack detection. Electronics, 2020, 9 (10): 1684.
doi: 10.3390/electronics9101684
|
| 45 |
HWANG C , KIM D , LEE T . Semi-supervised based unknown attack detection in EDR environment. KSⅡ Transactions on Internet and Information Systems, 2020, 14 (12): 4909- 4926.
|
| 46 |
HASSEN M, CHAN P K. Unsupervised open set recognition using adversarial autoencoders[C]//Proceedings of the 19th IEEE International Conference on Machine Learning and Applications (ICMLA). Washington D.C., USA: IEEE Press, 2020: 360-365.
|
| 47 |
CHOUHAN N , KHAN A , KHAN H U R . Network anomaly detection using channel boosted and residual learning based deep convolutional neural network. Applied Soft Computing, 2019, 83, 105612.
doi: 10.1016/j.asoc.2019.105612
|
| 48 |
ELSAYED M S, LE-KHAC N A, DEV S, et al. Network anomaly detection using LSTM based autoencoder[C]//Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks. New York, USA: ACM Press, 2020: 37-45.
|
| 49 |
WANG C , SUN Y X , LÜ S C , et al. Intrusion detection system based on one-class support vector machine and Gaussian mixture model. Electronics, 2023, 12 (4): 930.
doi: 10.3390/electronics12040930
|
| 50 |
ZHANG Z , ZHANG Y , NIU J , et al. Unknown network attack detection based on open-set recognition and active learning in drone network. Transactions on Emerging Telecommunications Technologies, 2022, 33 (10): 4212.
doi: 10.1002/ett.4212
|
| 51 |
SHIN G Y , KIM D W , HAN M M . Open set recognition with dissimilarity weight for unknown attack detection. IEEE Access, 2023, 11, 102381- 102390.
doi: 10.1109/ACCESS.2023.3277871
|
| 52 |
ZHANG Y , NIU J , GUO D , et al. Unknown network attack detection based on open set recognition. Procedia Computer Science, 2020, 174 (6): 387- 392.
|
| 53 |
WANG C , WANG B L , SUN Y X , et al. Intrusion detection for industrial control systems based on open set artificial neural network. Security and Communication Networks, 2021, 2021, 4027900.
|
| 54 |
YANG J , CHEN X , CHEN S W , et al. Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection. IEEE Transactions on Information Forensics and Security, 2021, 16, 3538- 3553.
doi: 10.1109/TIFS.2021.3083422
|
| 55 |
LIU Z C, LI S H, ZHANG Y Z, et al. Efficient malware originated traffic classification by using generative adversarial networks[C]//Proceedings of the IEEE Symposium on Computers and Communications (ISCC). Washington D.C., USA: IEEE Press, 2020: 1-7.
|
| 56 |
LIU A , WANG Y P , LI T . SFE-GACN: a novel unknown attack detection under insufficient data via intra categories generation in embedding space. Computers & Security, 2021, 105, 102262.
|
| 57 |
ABDALGAWAD N , SAJUN A , KADDOURA Y , et al. Generative deep learning to detect cyberattacks for the IoT-23 dataset. IEEE Access, 2022, 10, 6430- 6441.
doi: 10.1109/ACCESS.2021.3140015
|
| 58 |
CHEN L C , GAO S , LIU B X , et al. UAD-DPL: an unknown encrypted attack detection method based on deep prototype learning. Berlin, Germany: Springer, 2024.
|
| 59 |
YANG X J , TONG F , JIANG F , et al. A lightweight and dynamic open-set intrusion detection for industrial Internet of Things. IEEE Transactions on Information Forensics and Security, 2025, 20, 2930- 2943.
doi: 10.1109/TIFS.2025.3546849
|
| 60 |
ALRASHDI I , SALLAM K M , ALROWAILY M A , et al. FIDWATCH: federated incremental distillation for continuous monitoring of IoT security threats. Ad Hoc Networks, 2024, 165, 103637.
doi: 10.1016/j.adhoc.2024.103637
|
| 61 |
王一丰, 郭渊博, 陈庆礼, 等. 基于对比增量学习的细粒度恶意流量分类方法. 通信学报, 2023, 44 (3): 1- 11.
|
|
WANG Y F , GUO Y B , CHEN Q L , et al. Method based on contrastive incremental learning for fine-grained malicious traffic classification. Journal on Communications, 2023, 44 (3): 1- 11.
|
| 62 |
WANG Y, CAO S. A two-stage class incremental learning approach for network intrusion detection[C]//Proceedings of the 2024 IEEE Global Communications Conference. Washington D.C., USA: IEEE Press, 2024: 2353-2358.
|
| 63 |
ZHOU H X , KANG L Y , PAN H , et al. An intrusion detection approach based on incremental long short-term memory. International Journal of Information Security, 2023, 22 (2): 433- 446.
doi: 10.1007/s10207-022-00632-4
|
| 64 |
XU X H , ZHANG X X , ZHANG Q Y , et al. Advancing malware detection in network traffic with self-paced class incremental learning. IEEE Internet of Things Journal, 2024, 11 (12): 21816- 21826.
doi: 10.1109/JIOT.2024.3376635
|
| 65 |
JIN D , CHEN S W , HE H S , et al. Federated incremental learning based evolvable intrusion detection system for zero-day attacks. IEEE Network, 2023, 37 (1): 125- 132.
doi: 10.1109/MNET.018.2200349
|
| 66 |
CHATHOTH A K, NECCIAI C P, JAGANNATHA A, et al. Differentially private federated continual learning with heterogeneous cohort privacy[C]//Proceedings of the IEEE International Conference on Big Data. Washington D.C., USA: IEEE Press, 2022: 5682-5691.
|
| 67 |
MAHDAVI E , FANIAN A , MIRZAEI A , et al. ITL-IDS: incremental transfer learning for intrusion detection systems. Knowledge-Based Systems, 2022, 253, 109542.
doi: 10.1016/j.knosys.2022.109542
|
| 68 |
WANG W X, YANG H J, MEINEL C, et al. Feature distribution shift mitigation with contrastive pretraining for intrusion detection[C]// Proceedings of the IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). Washington D.C., USA: IEEE Press, 2024: 177-182.
|
| 69 |
HAN X Y, CUI S S, QIN J, et al. ContraMTD: an unsupervised malicious network traffic detection method based on contrastive learning[C]//Proceedings of the ACM Web Conference 2024. New York, USA: ACM Press, 2024: 1680-1689.
|
| 70 |
武晓栋, 金志刚, 陈旭阳, 等. 对抗学习辅助增强的增量式入侵检测系统. 哈尔滨工业大学学报, 2024, 56 (9): 31-37, 84.
|
|
WU X D , JIN Z G , CHEN X Y , et al. Adversarial learning-augmented incremental intrusion detection system. Journal of Harbin Institute of Technology, 2024, 56 (9): 31-37, 84.
|
| 71 |
AMALAPURAM S K, TADWAI A, VINTA R, et al. Continual learning for anomaly based network intrusion detection[C]//Proceedings of the 14th International Conference on Communication Systems & Networks. Washington D.C., USA: IEEE Press, 2022: 497-505.
|
| 72 |
|
| 73 |
XU H, WANG Y J. A continual few-shot learning method via meta-learning for intrusion detection[C]// Proceedings of the IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Washington D.C., USA: IEEE Press, 2022: 1188-1194.
|
| 74 |
BHURANI P , CHOUHAN S S , MITTAL N . Study of class incremental learning strategies for intrusion detection system. Berlin, Germany: Springer, 2023.
|
| 75 |
TABASSUM A , ERBAD A , LEBDA W , et al. FEDGAN-IDS: privacy-preserving IDS using GAN and federated learning. Computer Communications, 2022, 192, 299- 310.
doi: 10.1016/j.comcom.2022.06.015
|
| 76 |
WU X D , JIN Z G , CHEN X Y , et al. Boosting incremental intrusion detection system with adversarial samples. Expert Systems with Applications, 2025, 271, 126632.
doi: 10.1016/j.eswa.2025.126632
|
| 77 |
BORRINI E, DE SANTIS E, RIZZI A. A class incremental learning framework for DDoS detection[C]// Proceedings of the IEEE Symposium on Computational Intelligence in Security, Defence and Biometrics (CISDB). Washington D.C., USA: IEEE Press, 2025: 1-9.
|