作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2007, Vol. 33 ›› Issue (16): 153-155,.

• 人工智能及识别技术 • 上一篇    下一篇

基于变异的Bayesian优化算法

武 燕1,王宇平2,刘小雄3   

  1. (1. 西安电子科技大学理学院,西安 710071;2. 西安电子科技大学计算机学院,西安 710071;3. 西北工业大学自动化学院,西安 710072)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-08-20 发布日期:2007-08-20

Bayesian Optimization Algorithm Based on Mutation Operator

WU Yan1, WANG Yu-ping2, LIU Xiao-xiong3   

  1. (1. School of Science, Xidian University, Xi’an 710071; 2. School of Computer Science and Technology, Xidian University, Xi’an 710071; 3. College of Automation, Northwestern Polytechnical University, Xi’an 710072)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-08-20 Published:2007-08-20

摘要: 将变异算子与Bayesian优化算法相结合,提出了一种基于变异的Bayesian优化算法。在算法中设计了一个种群多样性函数,通过此函数引入变异算子,目的是利用变异算子的邻域搜索能力,保持种群多样性,将贝叶斯概率模型提取的全局信息与变异算子的局部信息联系起来,避免陷入局部最优。仿真研究表明基于变异的Bayesian优化算法的寻优能力比Bayesian优化算法更强。

关键词: 变异算子, Bayesian优化算法, 种群多样性

Abstract: A new Bayesian optimization algorithm is presented by incorporating mutation operator into Bayesian optimization algorithm. A diversity function of population is proposed and the mutation operator is incorporated in BOA through this function. The original objective is to maintain the diversity of population using the neighborhood search of mutation operator. It is expected that the proposed algorithm can get genuine global information by combining the global information in current population extracted by Bayesian probability model and local information explored by mutation operator. Experimental results show that the proposed algorithm outperforms BOA.

Key words: mutation operator, Bayesian optimization algorithm, population diversity

中图分类号: