作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于邻域和变异算子组合优化的MOEA/D算法

刘璐,郑力明   

  1. (暨南大学 电子工程系,广州 510632)
  • 收稿日期:2016-06-12 出版日期:2017-03-15 发布日期:2017-03-15
  • 作者简介:刘璐(1992—),女,硕士研究生,主研方向为多目标优化算法、智能进化算法;郑力明,教授、博士。
  • 基金资助:
    广东省对外科技合作基金(2013B051000060);广东省教育部产学研结合基金重点项目(2011A090200085);深圳市科技创新委员会基金(ZYC201105180515A)。

MOEA/D Algorithm Based on Combinational Optimization of Neighborhood and Mutation Operator

LIU Lu,ZHENG Liming   

  1. (Department of Electronic Engineering,Jinan University,Guangzhou 510632,China)
  • Received:2016-06-12 Online:2017-03-15 Published:2017-03-15

摘要: 考虑到在基于分解的多目标进化算法(MOEA/D)中,邻域大小与变异算子类型对算法进化过程中的探索模式有不同的影响,提出优化的MOEA/D算法。4种不同大小的邻域范围和4个特性不同的变异策略两两组合构成候选池,利用负反馈原则,在进化过程中以较高概率从候选池中选择表现更优的组合。实验结果表明,该算法鲁棒性较强,在保证收敛性的同时具有较好的多样性。

关键词: 邻域范围, 变异算子类型, 候选池, 基于分解的多目标进化算法, 多目标优化

Abstract: Considering that the range of neighborhood sizes and the type of mutation operators have huge effect on the exploration mode in the algorithm evolution process in Multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D),this paper proposes an optimized MOEA/D algorithm.Four different neighborhood sizes and four mutation strategies with different features are combined in pairs as a part of candidate pool.In the evolutionary process,the combination with better performance is selected from the candidate pool with higher possibility according to the principle of negative feedback.Experimental results indicate that the proposed algorithm has strong robustness,and good diversity while ensuring convergence.

Key words: neighborhood range, mutation operator type, candidate pool, Multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D), multi-objective optimization

中图分类号: