[1] 周潮, 邢文洋, 李宇龙.电力系统负荷预测方法综述[J].电源学报, 2012, 10(6):32-39. ZHOU C, XING W Y, LI Y L.Summarization on load forecasting method of electrical power system[J].Journal of Power Supply, 2012, 10(6):32-39.(in Chinese) [2] 张凌云, 肖惠仁, 吴俊豪, 等.电力系统负荷预测综述[J].电力大数据, 2018, 21(1):52-56. ZHANG L Y, XIAO H R, WU J H, et al.Review of power system load forecasting[J].Power Systems and Big Data, 2018, 21(1):52-56.(in Chinese) [3] 夏博, 杨超, 李冲.电力系统短期负荷预测方法研究综述[J].电力大数据, 2018, 21(7):22-28. XIA B, YANG C, LI C.Review of the short-term load forecasting methods of electric power system[J].Power Systems and Big Data, 2018, 21(7):22-28.(in Chinese) [4] HERNANDEZ L, BALADRON C, AGUIAR J M, et al.A survey on electric power demand forecasting:future trends in smart grids, microgrids and smart buildings[J].IEEE Communications Surveys & Tutorials, 2014, 16(3):1460-1495. [5] QUAN H, SRINIVASAN D, KHOSRAVI A.Short-term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2):303-315. [6] HOSSEN T, PLATHOTTAM S J, ANGAMUTHU R K, et al.Short-term load forecasting using deep neural networks[C]//Proceedings of IEEE NAPSʼ17.Washington D.C., USA:IEEE Press, 2017:1-6. [7] 魏华栋, 陶媛, 蔡昌春, 等.基于改进长短期记忆神经网络的短期负荷预测[J].电测与仪表, 2020, 57(19):93-98. WEI H D, TAO Y, CAI C C, et al.Short-term load forecasting based on improved long short-term memory neural network[J].Electrical Measurement & Instrumentation, 2020, 57(19):93-98.(in Chinese) [8] 王增平, 赵兵, 纪维佳, 等.基于GRU-NN模型的短期负荷预测方法[J].电力系统自动化, 2019, 43(5):53-58. WANG Z P, ZHAO B, JI W J, et al.Short-term load forecasting method based on GRU-NN model[J].Automation of Electric Power Systems, 2019, 43(5):53-58.(in Chinese) [9] 曾囿钧, 肖先勇, 徐方维, 等.基于CNN-BiGRU-NN模型的短期负荷预测方法[J].中国电力, 2021(9):17-23. ZENG Y J, XIAO X Y, XU F W, et al.A short-term load forecasting method based on CNN-BiGRU-NN model[J].Electric Power, 2021(9):17-23.(in Chinese) [10] NIKBAKHT S, ANITESCU C, RABCZUK T.Optimizing the neural network hyperparameters utilizing genetic algorithm[J].Journal of Zhejiang University-Science A, 2021, 22(6):407-426. [11] ZHU Y, LI G P, WANG R, et al.Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization[J].Applied Acoustics, 2021, 183:108336. [12] HORNG G J, LIN T C, LEE K C, et al.Prediction of prognosis in emergency trauma patients with optimal limit gradient based on grid search optimal parameters[J].Wireless Personal Communications, 2021, 120(2):1741-1751. [13] TORRES J F, GUTIÉRREZ-AVILÉS D, TRONCOSO A, et al.Random hyper-parameter search-based deep neural network for power consumption forecasting[C]//Proceedings of International Conference on Computational Intelligence.Berlin, Germany:Springer, 2019:1157-1169. [14] ALGORITHM S.Findings from fermi national accelerator laboratory in the area of algorithms described[J].Journal of Technology & Science, 2018, 45:643-658. [15] 蒋腾旭, 谢枫.遗传算法中防止早熟收敛的几种措施[J].计算机与现代化, 2006(12):54-56. JIANG T X, XIE F.Several measures to prevent premature convergence of genetic algorithm[J].Computer and Modernization, 2006(12):54-56.(in Chinese) [16] HASSANAT A, ALKAFAWEEN E, AL-NAWAISEH N A, et al.Enhancing genetic algorithms using multi mutations:experimental results on the travelling salesman problem[J].International Journal of Computer Science and Information Security, 2016, 14(7):1587-1594. [17] ZHANG X, YUEN S Y.A directional mutation operator for differential evolution algorithms[J].Applied Soft Computing, 2015, 30:529-548. [18] BEHROOZI F, HOSSEINI S M H, SANA S S.Teaching-learning-based genetic algorithm:an improved solution method for continuous optimization problems[J].International Journal of System Assurance Engineering and Management, 2021, 12(6):1362-1384. [19] 谢崇波, 李强.基于GA-GRU环境空气污染物预测研究[J].测控技术, 2019, 38(7):97-103. XIE C B, LI Q.Prediction of environmental air pollutants based on GA-GRU[J].Measurement & Control Technology, 2019, 38(7):97-103.(in Chinese) [20] 赵兵, 王增平, 纪维佳, 等.基于注意力机制的CNN-GRU短期电力负荷预测方法[J].电网技术, 2019, 43(12):4370-4376. ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecasting method based on attention mechanism of CNN-GRU[J].Power System Technology, 2019, 43(12):4370-4376.(in Chinese) [21] 朱伟, 孙运全, 钱尧, 等.基于CEEMD-GRU模型的短期电力负荷预测方法[J/OL].电测与仪表:1-8[2021-09-09].http://kns.cnki.net/kcms/detail/23.1202.TH.20200727.1613.026.html. ZHU W, SUN Y Q, QIAN Y, et al.Short-term load forecasting method based on complementary ensemble empirical mode decomposition and gated recurrent unit neural network[J/OL].Electrical Measurement and Instrumentation:1-8[2021-09-09].http://kns.cnki.net/kcms/detail/23.1202.TH.20200727.1613.026.html.(in Chinese) [22] 姚程文, 杨苹, 刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):3416-3424. YAO C W, YANG P, LIU Z J.Load forecasting method based on CNN-GRU hybrid neural network[J].Power System Technology, 2020, 44(9):3416-3424.(in Chinese) [23] ZHAO J S, GU Y T, FENG Z G.Optimization of processing parameters of power spinning for bushing based on neural network and genetic algorithms[J].Journal of Beijing Institute of Technology, 2019, 28(3):606-616. [24] 朱海振, 肖明清, 祁业兴, 等.基于改进GA-PSO的可重构测试资源匹配方法[J].测控技术, 2018, 37(6):24-28. ZHU H Z, XIAO M Q, QI Y X, et al.Reconfigurable test resource matching method based on improved genetic-particle swarm optimization algorithm[J].Measurement & Control Technology, 2018, 37(6):24-28.(in Chinese) [25] ZHANG J J, SUN G M, SUN Y G, et al.Hyper-parameter optimization by using the genetic algorithm for upper limb activities recognition based on neural networks[J].IEEE Sensors Journal, 2021, 21(2):1877-1884. [26] TORMOZOV V S, ZOLKIN A L, VASILENKO K A.Optimization of neural network parameters based on a genetic algorithm for prediction of time series[C]//Proceedings of 2020 International Conference on Industrial Engineering and Modern Technologies.Washington D.C., USA:IEEE Press, 2020:1-4. |