作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (13): 34-36,39. doi: 10.3969/j.issn.1000-3428.2010.13.012

• 软件技术与数据库 • 上一篇    下一篇

基于邻居决策的协同过滤推荐算法

李 春1,2,朱珍民1,高晓芳1,3,陈援非1   

  1. (1. 中国科学院计算技术研究所,北京 100080;2. 湘潭大学信息工程学院,湘潭 411105; 3. 首都师范大学计算机科学联合研究院,北京 100037)
  • 出版日期:2010-07-05 发布日期:2010-07-05
  • 作者简介:李 春(1985-),女,硕士研究生,主研方向:普适计算;朱珍民,教授、博士;高晓芳,硕士研究生;陈援非,博士
  • 基金资助:
    国家“863”计划基金资助项目(2006AA01Z112)

Collaborative Filtering Recommendation Algorithm Based on Neighbor Decision-making

LI Chun1,2, ZHU Zhen-min1, GAO Xiao-fang1,3, CHEN Yuan-fei1   

  1. (1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080; 2. College of Information Engineering, Xiangtan University, Xiangtan 411105; 3. Joint Faculty of Computer Scientific Research, Capital Normal University, Beijing 100037)
  • Online:2010-07-05 Published:2010-07-05

摘要: 协同过滤技术应用于个性化推荐系统中,稀疏性问题和可扩展性问题成为亟需解决的问题。针对传统方法的不足,提出一种凭借邻居数做决策的方法,比较各个待测位置的用户邻居数和项目邻居数,由数量多的一方作预测,同时对预测值判定给出一种合理而有效的度量方法。实验结果表明,该方法能够提高推荐质量。

关键词: 个性化推荐, 邻居数, 协作过滤, 平均绝对误差

Abstract: Collaborative filtering has been applied in personalized recommendation system successfully, sparsity problem and scalability problem become two big problems which remain unresolved. To slove the problem of traditional method, this paper propose a decision-making method relying on the number of neighbors. The method compares the number of user’s neighbors and item’s neighbors in every unpredicted position, and chooses the bigger one to make predicting. In addition, a reasonable and effective measurement is put forward to judge predicting. Experimental result shows that the quality of recommendation is largely improved.

Key words: personalized recommendation, number of neighbors, collaborative filtering, Mean Absolute Error(MAE)

中图分类号: