[1] 王春梅, 王曙燕, 孙家泽.基于MOOC+SPOC的《C语言程序设计》混合式一流课程建设研究[J].软件导刊, 2020, 19(12):10-13. WANG C M, WANG S Y, SUN J Z.The primary exploration on the construction of C programming language based on MOOC+SPOC[J].Software Guide, 2020, 19(12):10-13.(in Chinese) [2] 任敏.个性化推荐及其在MOOC中的应用[J].信息通信, 2019, 32(9):149-151. REN M.Personalized recommendation and application in MOOC[J].Information & Communications, 2019, 32(9):149-151.(in Chinese) [3] 刘华玲, 马俊, 张国祥.基于深度学习的内容推荐算法研究综述[J].计算机工程, 2021, 47(7):1-12. LIU H L, MA J, ZHANG G X.Review of studies on deep learning-based content recommendation algorithms[J].Computer Engineering, 2021, 47(7):1-12.(in Chinese) [4] CHENG H T, KOC L, HARMSEN J, et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York, USA:ACM Press, 2016:7-10. [5] 杨安平, 陈松乔, 胡鹏.基于图嵌入正则化的人脸线性判别分析[J].计算机工程, 2011, 37(12):164-165. YANG A P, CHEN S Q, HU F.Face linear discriminant analysis based on graph embedding and regularization[J]. Computer Engineering, 2011, 37(12):164-165.(in Chinese) [6] 邓爱林, 朱扬勇, 施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报, 2003, 14(9):1621-1628. DENG A L, ZHU Y Y, SHI B L.A collaborative filtering recommendation algorithm based on item rating prediction[J].Journal of Software, 2003, 14(9):1621-1628.(in Chinese) [7] 刘建国, 周涛, 汪秉宏.个性化推荐系统的研究进展[J].自然科学进展, 2009, 19(1):1-15. LIU J G, ZHOU T, WANG B H.Research progress of personalized recommendation system[J].Progress in Natural Science, 2009, 19(1):1-15.(in Chinese) [8] 刘峰, 王宝亮, 邹荣宇, 等.基于随机游走的网络表示学习推荐算法[J].计算机工程, 2021, 47(9):90-96, 105. LIU F, WANG B L, ZOU R Y, et al.Recommendation algorithm using network representation learning based on random walk[J].Computer Engineering, 2021, 47(9):90-96, 105.(in Chinese) [9] VAN DEN B R, KIPF T N, MAX W L.Graph convolutional matrix completion[EB/OL].[2021-11-20].https://arxiv.org/abs/1706.02263. [10] WANG X, HE X N, WANG M, et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:165-174. [11] HE X N, DENG K, WANG X, et al.LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:639-648. [12] WANG F, LIU H P.Understanding the behaviour of contrastive loss[EB/OL].[2021-11-20].https://arxiv.org/abs/2012.09740. [13] WU J C, WANG X, FENG F L, et al.Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2021:726-735. [14] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2021-11-20].https://arxiv.org/abs/1810.04805. [15] FANG H C, WANG S C, ZHOU M, et al.CERT:contrastive self-supervised learning for language understanding[EB/OL].[2021-11-20].https://arxiv.org/abs/2005.12766. [16] CHEN T, KORNBLITH S, NOROUZI M, et al.A simple framework for contrastive learning of visual representations[EB/OL].[2021-11-20].https://arxiv.org/abs/2002.05709. [17] YAO T S, YI X Y, CHENG D Z, et al.Self-supervised learning for large-scale item recommendations[EB/OL].[2021-11-20].https://arxiv.org/abs/2007.12865. [18] LIU Z W, CHEN Y G, LI J, et al.Contrastive self-supervised sequential recommendation with robust augmentation[EB/OL].[2021-11-20].https://arxiv.org/abs/2108.06479. [19] YOU Y N, CHEN T L, SUI Y D, et al.Graph contrastive learning with augmentations[EB/OL].[2021-11-20].https://arxiv.org/abs/2010.13902. [20] XU M H, WANG H, NI B B, et al.Self-supervised graph-level representation learning with local and global structure[EB/OL].[2021-11-20].https://arxiv.org/abs/2106.04113. [21] GUTMANN M U, HYVÄRINEN A.Noise-contrastive estimation:a new estimation principle for unnormalized statistical models[J].Journal of Machine Learning Research, 2010, 9:297-304. [22] RENDLE S, FREUDENTHALER C, GANTNER Z, et al.BPR:Bayesian personalized ranking from implicit feedback[M].Corvallis, USA:AUAI Press, 2012. [23] ZHANG J, HAO B W, CHEN B, et al.Hierarchical reinforcement learning for course recommendation in MOOCs[J].Artificial Intelligence, 2019, 33:435-442. [24] ZHAO W X, MU S L, HOU Y P, et al.RecBole:towards a unified, comprehensive and efficient framework for recommendation algorithms[EB/OL].[2021-08-28].https://arxiv.org/abs/2011.01731. [25] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of International Conference on Artificial Intelligence and Statistics.Boston, USA:MIT Press, 2010:249-256. [26] XUE H J, DAI X Y, ZHANG J B, et al.Deep matrix factorization models for recommender systems[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2017:3203-3209. |