作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (1): 174-181. doi: 10.19678/j.issn.1000-3428.0068561

• 图形图像处理 • 上一篇    下一篇

基于标记适应的人脸年龄识别优化算法

张会影1,2,*(), 圣文顺2   

  1. 1. 东南大学计算机科学与工程学院, 江苏 南京 211189
    2. 南京工业大学浦江学院计算机与通信工程学院, 江苏 南京 211200
  • 收稿日期:2023-10-12 出版日期:2025-01-15 发布日期:2025-01-18
  • 通讯作者: 张会影
  • 基金资助:
    江苏省高校自然科学研究项目(19KJD520005); 江苏省高校“青蓝工程”项目(苏教师函11号); 南京工业大学浦江学院自然科学重点培育项目(njpj2022-1-06); 2023年度江苏高校哲学社会科学研究项目(2023SJYB0687); 南京工业大学浦江学院2022教改重中之中项目(2022JG001Z)

Improved Algorithm for Facial Age Recognition Based on Label Adaptation

ZHANG Huiying1,2,*(), SHENG Wenshun2   

  1. 1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
    2. School of Computer and Communication Engineering, Pujiang Institute, Nanjing Tech University, Nanjing 211200, Jiangsu, China
  • Received:2023-10-12 Online:2025-01-15 Published:2025-01-18
  • Contact: ZHANG Huiying

摘要:

缺乏完整和足够的人脸年龄标记数据集是当前人脸年龄识别问题中最突出的挑战之一。由于相近年龄的面部具有相似性, 因此在年龄识别中可以学习并利用相邻年龄的面部信息, 将每张人脸图像看作相关年龄的标记分布(LD), 从而有效缓解了训练和测试数据集不足的问题。但是在不同年龄阶段, 人的面部衰老变化速度显著不同, 如儿童和老年时期面部变化较快, 而中年时期面部变化较平缓, 当前常用的LD方法存在模式单一的缺点, 难以适应不同年龄阶段人脸特征的变化规律。为提高人脸年龄识别算法的通用性, 提出一种深度学习框架下基于标记适应的人脸年龄识别优化算法IFAR-LA。引入标记适应机制, 能够更好地学习特征表示, 挖掘人脸图像数据中丰富的语义信息, 从而有效提取不同年龄阶段面部变化的特征, 大幅提升表示学习能力和泛化能力。改进后的标记适应算法能够适应不同年龄阶段人脸变化规律, 使每幅人脸图像在学习其真实年龄和相关年龄的时候都能发挥作用, 缓解训练数据不足的问题, 同时, 提升了算法普适性, 能够适应不同年龄阶段人的面部衰老变化速度。在公开的人脸数据集MORPH和FG-NET上的实验结果表明, IFAR-LA算法相比改进前的人脸年龄识别算法平均绝对误差分别降低了6.5%和11.5%。

关键词: 标记分布学习, 深度学习, 卷积神经网络, 人脸年龄识别, 平均绝对误差

Abstract:

The lack of a complete and sufficient dataset with facial age labels is one of the most prominent challenges in current facial age recognition. Owing to the similarity between faces of similar ages, in age recognition, the facial information of neighboring ages can be utilized to treat each face image as a Label Distribution (LD) of relevant ages, thus effectively alleviating the problem of insufficient training and testing datasets. However, the aging changes in individuals' faces differ significantly at different age stages; for example, facial changes occur more rapidly in children and old age, whereas they occur more gradually during middle age. The current commonly used LD method has the disadvantage of a single mode, which makes it difficult to adapt to the change law of facial features at different age stages. To enhance the generality of the facial age recognition algorithm, an improved algorithm for facial age recognition based on label adaptation within the framework of deep learning IFAR-LA is proposed. The algorithm introduces a label adaptation mechanism, which can better learn the feature representation and mine the rich semantic information in the face image data to adapt to the features of facial changes at different ages and significantly improve the representation learning and generalization abilities. The improved label adaptation algorithm is able to adapt to the age-related changes in different stages of people's faces, so that every facial image can contribute to learning the true age and related ages of the person, greatly alleviating the problem of insufficient training data. At the same time, the algorithm has improved its universality and can adapt to the changing speed of facial aging of people of different ages. The experimental results on publicly available facial datasets MORPH and FG-NET indicate that the Mean Absolute Error(MAE) of the IFAR-LA algorithm is reduced by 6.5% and 11.5%, respectively, compared to before the improvement.

Key words: Label Distribution(LD) learning, deep learning, Convolutional Neural Network(CNN), facial age recognition, Mean Absolute Error(MAE)