摘要:
在意见挖掘中,为实现特殊领域知识的语义相关度计算,提出基于Wikipedia的语义相关度计算方法。在构建Wikipedia类别树的基础上,通过Wikipedia类别向量表示Wikipedia中的词汇,形成一部包含各种领域知识的Wikipedia词典,利用该词典计算语义相关度。实验结果表明,该方法的斯皮尔曼等级相关系数可达到0.77。
关键词:
语义相关度,
领域知识,
Wikipedia类别树,
意见挖掘
Abstract:
n order to compute semantic relevancy for the specific domain knowledge in opinion mining, this paper proposes a semantic relevancy computing method based on Wikipedia. On the basis of constructing a category tree from Wikipedia, it represents the vast words in Wikipedia by using the category and the result in a Wikipedia dictionary which contains rich domain-specific knowledge, and then computes semantic relevancy by using the dictionary. Experimental results show Spearman rank correlation coefficient of this method can reach 0.77.
Key words:
semantic relevancy,
domain knowledge,
Wikipedia category tree,
opinion mining
中图分类号:
刘军, 姚天昉. 基于Wikipedia的语义相关度计算[J]. 计算机工程, 2010, 36(19): 42-43.
LIU Jun, TAO Tian-Fang. Semantic Relevancy Computing Based on Wikipedia[J]. Computer Engineering, 2010, 36(19): 42-43.