[1] 何力, 郑灶贤, 项凤涛.基于深度学习的文本分类技术研究进展[J].计算机工程, 2021, 47(2):1-11. HE L, ZHENG Z X, XIANG F T, et al.Research progress of text classification technology based on deep learning[J].Computer Engineering, 2021, 47(2):1-11.(in Chinese) [2] YOUNG T, HAZARIKA D, PORIA S, et al.Recent trends in deep learning based natural language processing[J].IEEE Computational Intelligence Magazine, 2018, 13(3):55-75. [3] LIN C, HE Y.Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2009:375-384. [4] JO Y, OH A H.Aspect and sentiment unification model for online review analysis[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2011:815-824. [5] ALAM M H, RYU W-J, LEE S.Joint multi-grain topic sentiment:modeling semantic aspects for online reviews[J].Information Sciences, 2016, 339:206-223. [6] 郝洁, 谢珺, 苏婧琼, 等.基于词加权LDA算法的无监督情感分类[J].智能系统学报, 2016, 11(4):539-545. HAO J, XIE J, SU J Q, et al.An unsupervised approach for sentiment classification based on weightedlatent dirichlet allocation[J].CAAI Transactions on Intelligent Systems, 2016, 11(4):539-545.(in Chinese) [7] NGUYEN T H, SHIRAI K.Topic modeling based sentiment analysis on social media for stock market prediction[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing, China:[s.n], 2015:1354-1364. [8] LIANG Q, RANGANATHAN S, WANG K, et al.JST-Rr model:joint modeling of ratings and reviews in sentiment-topic prediction[EB/OL].[2021-03-25].https://arxiv.org/abs/2102.11048v1. [9] 袁非牛, 章琳, 史劲亭, 等.自编码神经网络理论及应用综述[J].计算机学报, 2019, 42(1):203-230. YUAN F N, ZHANG L, SHI J T, Theories and applications of auto-encoder neural networks:a literature survey[J].Chinese Journal of Computers, 2019, 42(1):203-230.(in Chinese) [10] BLEI D M, KUCUKELBIR A, MCAULIFFE J D.Supervised topic models[EB/OL].[2021-03-25].https://arxiv.org/pdf/1601.00670.pdf. [11] BOWMAN S R, VILNIS L, VINYALS O, et al.Generating sentences from a continuous space[EB/OL].[2021-03-25].http://de.arxiv.org/pdf/1511.06349. [12] XU W, SUN H, DENG C, et al.Variational autoencoder for semi-supervised text classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2017:1-10. [13] SRIVASTAVA A, SUTTON C.Autoencoding variational inference for topic models[EB/OL].[2021-03-25].https://arxiv.org/abs/1703.01488v1. [14] TOMCZAK J, WELLING M.VAE with a VampPrior[EB/OL].[2021-03-25].https://arxiv.org/pdf/1705.07120.pdf. [15] TAKAHASHI H, IWATA T, YAMANAKA Y, et al.Variational autoencoder with implicit optimal priors[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:5066-5073. [16] 黄佳佳, 李鹏伟, 彭敏, 等.基于深度学习的主题模型研究[J].计算机学报, 2020, 43(5):75-103. HUANG J J, LI P W, PENG M, et al.Review of deep learning-based topic model[J].Chinese Journal of Computers, 2020, 43(5):75-103.(in Chinese) [17] HOANG T, LE H, QUAN T.Towards autoencoding variational inference for aspect-based opinion summary[J].Applied Artificial Intelligence, 2019, 33(9):796-816. [18] EISENSTEIN J, AHMED A, XING E P.Sparse additive generative models of text[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2011:1041-1048. [19] MIAO Y, YU L, BLUNSOM P.Neural variational inference for text processing[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2016:1727-1736. [20] TripAdvisor UK reviews gendered data sets with equal numbers of all five ratings[EB/OL].[2021-03-25].https://figshare.com/articles/dataset/TripAdvisor_reviews_of_hotels_and_restaurants_by_gender/6255284. [22] LI Q, LI S, ZHANG S, et al.A review of text corpus-based tourism big data mining[J].Applied Sciences, 2019, 9(16):3300. [23] JUWAHEER T D.Gender bias in hotel guests' perceptions of service quality:an empirical investigation of hotels in Mauritius[J].E-review of Tourism Research, 2011, 9(5):1-10. |