1 |
王鑫, 傅强, 王林, 等. 知识图谱可视化查询技术综述. 计算机工程, 2020, 46(6): 1- 11.
URL
|
|
WANG X, FU Q, WANG L, et al. Survey on visualization query technology of knowledge graph. Computer Engineering, 2020, 46(6): 1- 11.
URL
|
2 |
肖仰华, 徐波, 林欣. 知识图谱: 概念与技术[M]. 北京: 电子工业出版社, 2020.
|
|
XIAO Y H, XU B, LIN X. Knowledge graph[M]. Beijing: Publishing House of Electronics Industry, 2020. (in Chinese)
|
3 |
FÄRBER M, ELL B, MENNE C, et al. A comparative survey of DBpedia, Freebase, OpenCyc, wikidata, and YAGO. Semantic Web Journal, 2015, 1(1): 1- 5.
|
4 |
WISHART D S, KNOX C, GUO A C, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 2006, 34(S): 668- 672.
|
5 |
YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13): 232- 240.
doi: 10.1093/bioinformatics/btn162
|
6 |
CHEN B, DONG X, JIAO D, et al. Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics, 2010, 11, 255.
doi: 10.1186/1471-2105-11-255
|
7 |
王昊奋, 丁军, 胡芳槐, 等. 大规模企业级知识图谱实践综述. 计算机工程, 2020, 46(7): 1- 13.
URL
|
|
WANG H F, DING J, HU F H, et al. Survey on large scale enterprise-level knowledge graph practices. Computer Engineering, 2020, 46(7): 1- 13.
URL
|
8 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
9 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2015: 2181-2187.
|
10 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2014: 1112-1119.
|
11 |
FENG J, HUANG M L, WANG M D, et al. Knowledge graph embedding by flexible translation[C]//Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning. New York, USA: ACM Press, 2016: 557-560.
|
12 |
YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2022-07-05]. https://arxiv.org/abs/1412.6575.
|
13 |
SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 926-934.
|
14 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 16- 25.
|
15 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
16 |
GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864.
|
17 |
SUN Y Z, HAN J W. Mining heterogeneous information networks: principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2): 1- 159.
doi: 10.1007/978-3-031-01902-9
|
18 |
DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 135-144.
|
19 |
ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
|
20 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4- 24.
|
21 |
|
22 |
|
23 |
JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2016: 985-991.
|
24 |
ZHENG A, CASARI A. Feature engineering for machine learning: principles and techniques for data scientists[M]. [S. l. ]: O'Reilly Media, Inc., 2018.
|
25 |
LESHNO M, LIN V Y, PINKUS A, et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6): 861- 867.
|
26 |
CUI Z J, KAPANIPATHI P, TALAMADUPULA K, et al. Type-augmented relation prediction in knowledge graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(8): 7151- 7159.
|
27 |
NARAYANAN A, CHANDRAMOHAN M, VENKATESAN R, et al. graph2vec: learning distributed representations of graphs[EB/OL]. [2022-07-05]. https://arxiv.org/abs/1707.05005.
|
28 |
BANSAL T, JUAN D C, RAVI S, et al. A2N: attending to neighbors for knowledge graph inference[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 4387-4392.
|
29 |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of WWW'19. New York, USA: ACM Press, 2019: 2022-2032.
|
30 |
SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3060- 3067.
|
31 |
MALAVIYA C, BHAGAVATULA C, BOSSELUT A, et al. Commonsense knowledge base completion with structural and semantic context. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 2925- 2933.
|
32 |
|
33 |
MOHAMED S K, MUÑOZ E, NOVACEK V. On training knowledge graph embedding models. Information, 2021, 12(4): 147.
|
34 |
AKRAMI F, GUO L B, HU W, et al. Re-evaluating embedding-based knowledge graph completion methods[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 1779-1782.
|
35 |
|