作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (17): 280-283. doi: 10.3969/j.issn.1000-3428.2012.17.075

• 开发研究与设计技术 • 上一篇    下一篇

基于隐状态排序的半异构无线定位方法

胡 琨1,2,陈益强1,2,刘军发2   

  1. (1. 湘潭大学信息工程学院,湖南 湘潭 411105;2. 中国科学院计算技术研究所普适计算研究中心,北京 100190)
  • 收稿日期:2011-11-29 修回日期:2012-01-12 出版日期:2012-09-05 发布日期:2012-09-03
  • 作者简介:胡 琨(1987-),男,硕士研究生,主研方向:机器学习;陈益强,研究员、博士;刘军发,助理研究员、博士
  • 基金资助:
    国家自然科学基金资助项目(61173066)

Semi-heterogeneous Wireless Location Method Based on Hidden State Sorting

HU Kun 1,2, CHEN Yi-qiang 1,2, LIU Jun-fa 2   

  1. (1. School of Information Engineering, Xiangtan University, Xiangtan 411105, China; 2. Research Center for Pervasive Computing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)
  • Received:2011-11-29 Revised:2012-01-12 Online:2012-09-05 Published:2012-09-03

摘要: 针对室内Wi-Fi环境的信号缺失问题,提出一种基于隐状态排序的半异构无线定位方法。介绍隐马尔可夫模型、隐状态排序方法,设计包含离线训练阶段和在线定位阶段的定位方法。实验结果表明,该方法在1 m误差范围内准确率达96.3%,能解决半异构特征向量的信号缺失问题,提高实际应用能力。

关键词: 室内定位, 信号强度, 隐马尔可夫模型, 隐状态, 半异构特征

Abstract: Facing the signal missing problem in the indoor Wi-Fi environment, this paper proposes a semi-heterogeneous wireless location method based on hidden state sorting. It introduces Hidden Markov Model(HMM) and hidden state sorting approach, designs the localization method including offline training phase and online localization phase. Experimental results show that this method can achieve 96.3% accuracy within an error distance of 1 meter, greatly solve the signal missing problem of semi-heterogeneous feature vectors, and enhance its practical application capability.

Key words: indoor location, signal intensity, Hidden Markov Model(HMM), hidden state, semi-heterogeneous feature

中图分类号: