作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (2): 207-213. doi: 10.19678/j.issn.1000-3428.0053993

• 移动互联与通信技术 • 上一篇    下一篇

基于WiFi的室内定位准确率改进算法

潘维蔚1,2,3, 康凯1, 张武雄4, 王海峰4   

  1. 1. 中国科学院上海高等研究院, 上海 201210;
    2. 中国科学院大学 电子电气与通信工程学院, 北京 100049;
    3. 上海科技大学 信息科学与技术学院, 上海 201210;
    4. 中国科学院上海微系统与信息技术研究所, 上海 200050
  • 收稿日期:2019-02-25 修回日期:2019-03-26 发布日期:2020-02-12
  • 作者简介:潘维蔚(1993-),男,硕士,主研方向为无线定位、机器学习、大数据;康凯,高级工程师、博士;张武雄,副研究员、博士;王海峰,研究员、博士。
  • 基金资助:
    国家自然科学基金面上项目(61671436);上海市科委科技创新计划(18511103502)。

Improved Algorithm for Indoor Positioning Accuracy Based on WiFi

PAN Weiwei1,2,3, KANG Kai1, ZHANG Wuxiong4, WANG Haifeng4   

  1. 1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
    4. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2019-02-25 Revised:2019-03-26 Published:2020-02-12

摘要: 针对目前无线保真定位系统在低于2 m的误差范围内累计准确率过低的问题,提出一种改进的去异常值的线性判别低维组合算法。根据无线保真信号强度数据的自身特征进行异常值去除,利用线性判别算法在低维情况下进行排列组合,对所得的若干个概率值求和,通过门限设置对在线定位阶段的新数据进行约束,以提高相邻网格定位的准确率。在真实办公环境室内相邻网格的多次不同场景下将实测数据集作为测试集进行实验,结果验证了该算法的有效性和正确性。

关键词: 室内定位, 无线保真, 信号强度, 机器学习, 线性判别算法

Abstract: The current Wireless Fidelity(WiFi) positioning system has the problem of low cumulative accuracy when the error range is less than two meters.Therefore,this paper proposes an improved linear discriminant low dimensional combination algorithm,in which the outlier is removed according to the characteristic of WiFi signal strength data.The linear discriminant algorithm is used to arrange combinations under low dimensional conditions,and the probability values obtained are summed up.The threshold is set as the additional constraint for the new data obtained in the online positioning phase,so as to improve the accuracy of adjacent grid positioning.The actual measured data of indoor outdoor adjacent grid in real office environment under different conditions are used as the testing dataset and the results verify the effectiveness and correctness of the proposed algorithm.

Key words: indoor position, Wireless Fidelity(WiFi), signal strength, machine learning, linear discriminant algorithm

中图分类号: