1 |
张学军, 何福存, 盖继扬, 等. 边缘计算下指纹室内定位差分私有联邦学习模型. 计算机研究与发展, 2022, 59 (12): 2667- 2688.
doi: 10.7544/issn1000-1239.20210270
|
|
ZHANG X J, HE F C, GAI J Y, et al. A differentially private federated learning model for fingerprinting indoor localization in edge computing. Journal of Computer Research and Development, 2022, 59 (12): 2667- 2688.
doi: 10.7544/issn1000-1239.20210270
|
2 |
YANG Z, WU C S, LIU Y H. Locating in fingerprint space: wireless indoor localization with little human intervention[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. New York, USA: ACM Press, 2012: 269-280.
|
3 |
ZHANG Z, LU Z H, SAAKIAN V, et al. Item-level indoor localization with passive UHF RFID based on tag interaction analysis. IEEE Transactions on Industrial Electronics, 2014, 61 (4): 2122- 2135.
doi: 10.1109/TIE.2013.2264785
|
4 |
VINICCHAYAKUL W, PROMWONG S. Improvement of fingerprinting technique for UWB indoor localization[C]//Proceedings of the 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering. Washington D. C., USA: IEEE Press, 2014: 1-5.
|
5 |
CHENG L, WU Z, LAI B, et al. Ultra wideband indoor positioning system based on artificial intelligence techniques[C]//Proceedings of 2020 IEEE International Conference on Information Reuse and Integration for Data Science. Washington D. C., USA: IEEE Press, 2020: 438-444.
|
6 |
CHI G X, XU J G, ZHANG J L, et al. Locate, tell, and guide: enabling public cameras to navigate the public. IEEE Transactions on Mobile Computing, 2023, 22 (2): 1010- 1024.
doi: 10.1109/TMC.2021.3092725
|
7 |
CHEN X, LI H, ZHOU C Y, et al. Fidora: robust WiFi-based indoor localization via unsupervised domain adaptation. IEEE Internet of Things Journal, 2022, 9 (12): 9872- 9888.
doi: 10.1109/JIOT.2022.3163391
|
8 |
孙顺远, 于敬源. 一种针对异构设备和环境变化的室内定位算法. 吉林大学学报(理学版), 2023, 61 (4): 915- 921.
URL
|
|
SUN S Y, YU J Y. An indoor location algorithm for heterogeneous devices and environmental changes. Journal of Jilin University(Science Edition), 2023, 61 (4): 915- 921.
URL
|
9 |
WANG X Y, WANG X Y, MAO S W. Deep convolutional neural networks for indoor localization with CSI images. IEEE Transactions on Network Science and Engineering, 2020, 7 (1): 316- 327.
doi: 10.1109/TNSE.2018.2871165
|
10 |
ZHENG Y, LIU J Y, SHENG M, et al. Exploiting fingerprint correlation for fingerprint-based indoor localization: a deep learning-based approach[M]//TIKU S, PASRICHA S. Machine learning for indoor localization and navigation. Berlin, Germany: Springer, 2023: 201-237.
|
11 |
PATIL M, WANG X Y, WANG X Y, et al. Adversarial attacks on deep learning-based floor classification and indoor localization[C]//Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning. New York, USA: ACM Press, 2021: 7-12.
|
12 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2017: 39-57.
|
13 |
|
14 |
纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述. 软件学报, 2021, 32 (1): 41- 67.
doi: 10.13328/j.cnki.jos.006131
|
|
JI S L, DU T Y, LI J F, et al. Security and privacy of machine learning models: a survey. Journal of Software, 2021, 32 (1): 41- 67.
doi: 10.13328/j.cnki.jos.006131
|
15 |
|
16 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9185-9193.
|
17 |
ZHOU Y X, CHEN H X, HUANG C Y, et al. WiAdv: practical and robust adversarial attack against WiFi-based gesture recognition system[C]//Proceedings of the ACM Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies. New York, USA: ACM Press, 2022, 6(2): Article92.
|
18 |
张学军, 鲍俊达, 何福存, 等. 抵御对抗样本攻击的指纹室内定位方法. 北京航空航天大学学报, 2022, 48 (11): 2087- 2101.
doi: 10.13700/j.bh.1001-5965.2021.0789
|
|
ZHANG X J, BAO J D, HE F C, et al. A fingerprint indoor localization method against adversarial sample attacks. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (11): 2087- 2101.
doi: 10.13700/j.bh.1001-5965.2021.0789
|
19 |
LECUYER M, ATLIDAKIS V, GEAMBASU R, et al. Certified robustness to adversarial examples with differential privacy[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2019: 656-672.
|
20 |
|
21 |
ZAFARI F, GKELIAS A, LEUNG K K. A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 2019, 21 (3): 2568- 2599.
doi: 10.1109/COMST.2019.2911558
|
22 |
TORRES-SOSPEDRA J, MONTOLIU R, MARTINEZ-USO A, et al. UJIIndoorLoc: a new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems[C]//Proceedings of International Conference on Indoor Localization and Indoor Navigation. Washington D. C., USA: IEEE Press, 2014: 261-270.
|
23 |
JIANG X L, CHEN Y Q, LIU J F, et al. FSELM: fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints. Soft Computing, 2018, 22 (11): 3621- 3635.
doi: 10.1007/s00500-018-3171-4
|
24 |
ZHANG X J, HE F C, CHEN Q, et al. A differentially private indoor localization scheme with fusion of WiFi and bluetooth fingerprints in edge computing. Neural Computing and Applications, 2022, 34 (6): 4111- 4132.
doi: 10.1007/s00521-021-06815-9
|
25 |
GURSOY M E, LIU L, CHOW K H, et al. An adversarial approach to protocol analysis and selection in local differential privacy. IEEE Transactions on Information Forensics and Security, 2022, 17, 1785- 1799.
doi: 10.1109/TIFS.2022.3170242
|
26 |
LI Y M, JIANG Y, LI Z F, et al. Backdoor learning: a survey. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (1): 5- 22.
doi: 10.1109/TNNLS.2022.3182979
|
27 |
HSIEH C H, CHEN J Y, NIEN B H. Deep learning-based indoor localization using received signal strength and channel state information. IEEE Access, 2019, 7, 33256- 33267.
doi: 10.1109/ACCESS.2019.2903487
|