摘要: 针对信号识别率高低由识别模型及特征参数决定的特点,提出融合K均值聚类的多观察序列的Baum-Welch参数重估算法,用于训练隐马尔科夫模型(HMM),通过主分量分析(PCA)对梅尔频率倒谱系数进行变换,并设计与实现一套基于PCA和HMM的心音自动识别系统。实验结果表明,该系统对6类常见心音的平均识别率达到83.3%,性能优于其他心音识别系统。
关键词:
梅尔频率倒谱系数,
主分量分析,
隐马尔科夫模型,
K均值聚类,
Baum-Welch算法,
心音识别
Abstract: According to the signal recognition rate decided by recognition model and the characteristic parameters, this paper puts forward the fusion K-means clustering of the observed sequence Baum-Welch parameters estimation algorithm to train Hidden Markov Model(HMM), the Principal Component Analysis(PCA) is adopted to transform Mel Frequency Cepstrum Coefficient(MFCC) features. A heart sounds signal automatic diagnosis system is designed based on PCA and HMM. Experimental results show that the average recognition rate of 6 common classe’s heart sounds reaches 83.3%, the performance is better than other heart sound recognition systems.
Key words:
Mel Frequency Cepstrum Coefficient(MFCC),
Principal Component Analysis(PCA),
Hidden Markov Model(HMM),
K-means clustering,
Baum-Welch algorithm,
heart sounds recognition
中图分类号:
王晓燕, 曾庆宁, 粟秀尹. 基于PCA和HMM的心音自动识别系统[J]. 计算机工程, 2012, 38(20): 148-151.
WANG Xiao-Yan, CENG Qiang-Ning, SU Xiu-Yin. Heart Sounds Automatic Recognition System Based on PCA and HMM[J]. Computer Engineering, 2012, 38(20): 148-151.