[1] 邸凯昌, 万文辉, 赵红颖, 等.视觉SLAM技术的进展与应用[J].测绘学报, 2018, 47(6):770-779. DI K C, WAN W H, ZHAO H Y, et al.Progress and applications of visual SLAM[J].Acta Geodaetica et Cartographica Sinica, 2018, 47(6):770-779.(in Chinese) [2] SMITH R, SELF M, CHEESEMAN P.Estimating uncertain spatial relationships in robotics[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 1987:850-850. [3] 赵洋, 刘国良, 田国会, 等.基于深度学习的视觉SLAM综述[J].机器人, 2017, 39(6):889-896. ZHAO Y, LIU G L, TIAN G H, et al.A survey of visual SLAM based on deep learning[J].ROBOT, 2017, 39(6):889-896.(in Chinese) [4] DI K, XU F L, WANG J, et al.Photogrammetric processing of rover imagery of the 2003 mars exploration rover mission[J].ISPRS Journal of Photogramm and Remote Sensing, 2008, 63(2):181-201. [5] WANG B F, ZHOU J L, TANG G S.Research on visual localization method of lunar rover[J].Science China-Information Sciences, 2014, 44(4):452-260. [6] LIU Z Q, DI K C, LI J, et al.Landing site topographic mapping and rover localization for Chang'e-4 mission[J].Science China-Information Sciences, 2020, 63(4):1-12. [7] ZHANG Z.Microsoft kinect sensor and its effect[J].IEEE Multimedia, 2012, 19(2):4-10. [8] 付梦印, 吕宪伟, 刘彤.基于RGB-D数据的实时SLAM算法[J].机器人, 2015, 37(6):683-692. FU M Y, LÜ X W, LIU T.Real-time SLAM algorithm based on RGB-D data[J].ROBOT, 2015, 37(6):683-692.(in Chinese) [9] HAN J, SHAO L, XU D, et al.Enhanced computer vision with microsoft kinect sensor:a review[J].IEEE Transactions on Cybernetics, 2013, 43(5):1318-1334. [10] GUEVARA D C, VIETRI G, PRABAKAR M, et al.Robotic exoskeleton system controlled by kinect and haptic sensors for physical therapy[C]//Proceedings of the 29th Southern Biomedical Engineering Conference.Washington D.C., USA:IEEE Press, 2013:71-72. [11] MUR-ARTAL R, TARDÓS J D.ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras[J].IEEE Transaction on Robotics, 2017, 33(5):1255-1262. [12] ENGEL J, SCHÖPS T, CREMERS D.LSD-SLAM:large-scale direct monocular SLAM[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:834-849. [13] KLEIN G, MURRAY D.Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.Washington D.C., USA:IEEE Press, 2007:225-234. [14] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J.DTAM:dense tracking and mapping in real-time[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:2320-2327. [15] WANG C C, THORPE C, THRUN S, et al.Simultaneous localization and mapping with detection and tracking of moving objects[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2002:2918-2924. [16] ALCANTARILLA P, YEBES J, ALMAZN J, et al.On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2012:1290-1297. [17] WANG Y, HUANG S.Towards dense moving object segmentation based robust dense RGB-D SLAM in dynamic scenarios[C]//Proceedings of the 13th International Conference on Control Automation Robotics and Vision.Washington D.C., USA:IEEE Press, 2014:1841-1846. [18] BAKKAY M C, ARAFA M, ZAGROUBA E.Dense 3D SLAM in dynamic scenes using kinect[C]//Proceedings of the 7th Iberian Conference on Pattern Recognition and Image Analysis.Berlin, Germany:Springer, 2015:121-129. [19] SUN Y, LIU M, MENG Q H.Improving RGB-D SLAM in dynamic environments:a motion removal approach[J].Robotics and Autonomous Systems, 2017, 89:110-122. [20] SUN Y X, LIU M A, MAX Q H, et al.Motion removal for reliable RGB-D SLAM in dynamic environments[J].Robotics and Autonomous Systems, 2018, 108:115-128. [21] MORATUWAGE D, VO B N, WANG D.Collaborative multi-vehicle SLAM with moving object tracking[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2013:5702-5708. [22] ZOU D, TAN P.CoSLAM:collaborative visual SLAM in dynamic environments[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(2):354-366. [23] LEE D, MYUNG H.Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor[J].Sensors, 2014, 14(7):12467-12496. [24] KIM D H, KIM J H.Effective background model-based RGB-D dense visual odometry in a dynamic environment[J].IEEE Transactions on Robotics, 2017, 32(6):1565-1573. [25] LI S, LEE D.RGB-D SLAM in dynamic environments using static point weighting[J].IEEE Robotics and Automation Letters, 2017, 2(4):2263-2270. [26] CUI L, MA C.SDF-SLAM:semantic depth filter SLAM for dynamic environments[J].IEEE Access, 2020, 8:95301-95311. [27] WANG R, WAN W, WANG Y, et al.A new RGB-D SLAM method with moving object detection for dynamic indoor scenes[J].Remote Sensing, 2019, 11(10):1143-1148. [28] SHIMAMURA J, MORIMOTO M, KOIKE H.Robust vSLAM for dynamic scenes[C]//Proceedings of the MVA2011 IAPR Conference on Machine Vision Applications.Washington D.C., USA:IEEE Press, 2011:344-347. [29] CHENG J Y, SUN Y X, MENG M Q H.Improving monocular visual SLAM in dynamic environments:an optical-flow-based approach[J].Advanced Robotics, 2019, 33(12):576-589. [30] LIU H, LIU G, TIAN G, et al.Visual SLAM based on dynamic object removal[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics.Washington D.C., USA:IEEE Press, 2019:596-601. [31] KIM D H, HAN S B, KIM J H.Visual odometry algorithm using an RGB-D sensor and IMU in a highly dynamic environment[C]//Proceedings of the 3rd Conference on Robot Intelligence Technology and Applications.Berlin, Germany:Springer, 2015:11-26. [32] YANG S, WANG J, WANG G, et al.Robust RGB-D SLAM in dynamic environment using faster R-CNN[C]//Proceedings of the 3rd IEEE International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2017:5702-5708. [33] HE K, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2961-2969. [34] ZHONG F, WANG S, ZHANG Z, et al.Detect-SLAM:making object detection and SLAM mutually beneficial[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision.Washington D.C., USA:IEEE Press, 2018:1001-1010. [35] 张金凤, 石朝侠, 王燕清.动态场景下基于视觉特征的SLAM方法[J].计算机工程, 2020, 46(10):95-102. ZHANG J F, SHI C X, WANG Y Q.SLAM method based on visual features in dynamic scene[J].Computer Engineering, 2020, 46(10):95-102.(in Chinese) [36] WANG R, WANG Y, WAN W, et al.A point-line feature based visual SLAM method in dynamic indoor scene[C]//Proceedings of 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services.Washington D.C., USA:IEEE Press, 2018:1-6. [37] BESCOS B, FÁCIL J M, CIVERA J, et al.DynaSLAM:tracking, mapping, and inpainting in dynamic scenes[J].IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083. [38] CHENG J, WANG Z, ZHOU H, et al.DM-SLAM:a feature-based SLAM system for rigid dynamic scenes[J].ISPRS International Journal of Geo-Information, 2020, 9:1-11. [39] 余东应, 刘桂华, 曾维林, 等.一种自适应窗隔匹配与深度学习相结合的RGB-D SLAM算法[J]. 计算机工程, 2020, 47(8):224-233. YU D Y, LIU G H, ZENG W L, et al.A RGB-D SLAM algorithm combining adaptive window interval matching and deep learning[J].Computer Engineering, 2020, 47(8):224-233.(in Chinese) [40] YU C, LIU Z, LIU X J, et al.DS-SLAM:a semantic visual SLAM towards dynamic environments[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2018:1168-1174. [41] CHENG J, ZHANG H, MENG M Q.Improving visual localization accuracy in dynamic environments based on dynamic region removal[J].IEEE Transactions on Automation Science and Engineering, 2020, 17(3):1585-1596. [42] RUBLEE E, RABAUD V, KONOLIGE K, et al.ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:2564-2571. [43] HOWARD A G, ZHU M, CHEN B, et al.MobileNets:efficient conovolutional neural networks for mobilevision application[EB/OL].[2020-10-15].https://arxiv.org/pdf/1704.04861.pdf. [44] STURM J, ENGELHARD N, ENDRES F, et al.A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2012:573-580. |