[1] 刘国嵩, 贾继强.无人机在电力系统中的应用及发展方向[J]. 东北电力大学学报, 2012, 32(1): 53-56. LIU G S, JIA J Q.Application and development direction of UAV in electric power system[J]. Journal of Northeast Dianli University, 2012, 32(1): 53-56.(in Chinese) [2] 王淼, 杜毅, 张忠瑞.无人机辅助巡视及绝缘子缺陷图像识别研究[J]. 电子测量与仪器学报, 2015, 29(12): 1862-1869. WANG M, DU Y, ZHANG Z R.Research on UAVs and insulator defect image recognition[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(12): 1862-1869.(in Chinese) [3] 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. YIN H P, CHEN B, CHAI Y, et al. Overview of object detection and tracking based on vision[J]. Journal of Automation, 2016, 42(10): 1466-1489.(in Chinese) [4] 杨翠茹.基于纹理特征的绝缘子检测方法[J]. 电气技术, 2010(7): 63-65, 69. YANG C R.Texture features-based insulator detection method[J]. Electrical Technology, 2010(7): 63-65, 69.(in Chinese) [5] 赵振兵, 王乐.一种航拍绝缘子串图像自动定位方法[J]. 仪器仪表学报, 2014, 35(3): 558-565. ZHAO Z B, WANG L.An automatic image positioning method of aerial photo insulator string[J]. Journal of Instrumentation, 2014, 35(3): 558-565.(in Chinese) [6] GIRSHICK R.Fast R-CNN[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [8] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:7263-7271. [9] LIU X, JIANG H, CHEN J, et al. Insulator detection in aerial images based on faster regions with convolutional neural network[C]//Proceedings of International Conference on Control and Automation.Washington D.C., USA:IEEE Press, 2018:1082-1086. [10] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2015, 39(6): 1137-1149. [11] XU C, BO B, LIU Y, et al. Detection method of insulator based on single shot multibox detector[J]. Journal of Physics:Conference Series, 2018, 1069(1): 1-10. [12] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [13] CHEN H, HE Z, SHI B, et al. Research on recognition method of electrical components based on YOLO V3[J]. IEEE Access, 2019, 7:157818-157829. [14] REDMON J, FARHADI A.YOLO V3:an incremental improvement[EB/OL]. [2021-06-10]. https://arxiv.org/abs/1804.02767. [15] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [16] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:658-666. [17] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:499-515. [18] TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(4): 1486-1498. [19] DENG J, DONG W, SOCHER R, et al. Imagenet:a large-scale hierarchical image database[C]//Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2009:20-25. [20] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017, 1:618-626. |