作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2013, Vol. 39 ›› Issue (6): 283-286. doi: 10.3969/j.issn.1000-3428.2013.06.062

• 图形图像处理 • 上一篇    下一篇

基于改进水平集的人脑海马图像分割方法

于广婷1,李柏林1,邹 翎2,黄秋菊2   

  1. (1. 西南交通大学机械工程学院,成都 610031;2. 四川大学华西医院放射科,成都 610041)
  • 收稿日期:2012-07-27 出版日期:2013-06-15 发布日期:2013-06-14
  • 作者简介:于广婷(1989-),女,硕士研究生,主研方向:图像处理;李柏林,教授、博士生导师;邹 翎,副主任医师、博士;黄秋菊,医师
  • 基金资助:
    四川省科技创新苗子工程基金资助项目(2011-001);四川省成都市科技计划基金资助项目(11PPYB109SF)

Segmentation Method for Human Hippocampus Image Based on Improved Level Set

YU Guang-ting 1, LI Bai-lin 1, ZOU Ling 2, HUANG Qiu-ju 2   

  1. (1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Department of Radilogy, West China Hospital, Sichuan University, Chengdu 610041, China)
  • Received:2012-07-27 Online:2013-06-15 Published:2013-06-14

摘要: 人脑MR图像中的海马结构存在低对比度、边界模糊等缺点,给海马的轮廓分割带来较大干扰。为解决水平集分割海马时边界容易停留在非目标区域梯度极值处的问题,提出一种改进的水平集方法。从图像全局出发考虑方差信息,在水平集函数的外部能量泛函中增加波动能量项,驱动零水平集曲线向灰度波动较小的区域运动。实验结果表明,该方法可提取出MR图像中的海马轮廓,分割效果较好,演化速度有所提高。

关键词: 人脑海马, 水平集方法, 梯度极值, 灰度波动, 全局方差, 轮廓提取

Abstract: The contour extraction of hippocampus in human brain MR images has a lot of interference which is caused by its low contrast, fuzzy boundaries, and so on. To solve this problem that the boundary stays at gradient extremal in non-target area when level set segmentation method is applied, in this paper, a method based on improved level set is proposed. It considers the variance information through the whole image, adds wave energy items in the external energy functional of the level set function, and drives the zero level set curve to where gray-scale fluctuation is smaller relative to the hippocampus. Experimental results show that this method can ideally extract the contour of the hippocampus from the MR images with excellent segmentation results and greatly improves the evolution speed.

Key words: human hippocampus, level set method, gradient extremum, gray-scale fluctuation, global variance, contour extraction

中图分类号: