作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (5): 230-231,234. doi: 10.3969/j.issn.1000-3428.2011.05.078

• 图形图像处理 • 上一篇    下一篇

局部熵驱动区域主动轮廓的局部化框架

辛维斌1,张善卿1,张桂戌2   

  1. (1. 杭州电子科技大学图形图像研究所,杭州 310018;2. 华东师范大学计算机科学技术系,上海 200062)
  • 出版日期:2011-03-05 发布日期:2012-10-31
  • 作者简介:辛维斌(1984-),男,硕士研究生,主研方向:图像处理,模式识别;张善卿,副教授、博士;张桂戌,教授、博士
  • 基金资助:
    国家自然科学基金资助项目(60773119)

Localizing Framework of Region-based Active Contours Driven by Local Entropy

XIN Wei-bin  1, ZHANG Shan-qing  1, ZHANG Gui-xu  2   

  1. (1. Institute of Graphics and Image, Hangzhou Dianzi University, Hangzhou 310018, China; 2. Department of Computer Science and Technology, East China Normal University, Shanghai 200062, China)
  • Online:2011-03-05 Published:2012-10-31

摘要: 提出一种将任意基于区域主动轮廓线模型进行局部化推广的框架。该框架的能量泛涵包含一个惩罚区域弧长的几何正则项和一个局部区域数据拟合项。根据图像像素空间排列的相关性,采用一个滑动窗函数提取图像局部熵,将图像从灰度空间转化到相应局部熵特征空间。在局部熵特征空间,采用另外的窗函数进行局部区域信息提取,从而推导出区域主动轮廓线模型的局部化框架。以CV模型为例推导局部化过程,并对2种常用的窗函数进行分析比较。实验结果表明,该方法可以成功分割一类包含有杂乱特征的图像。

关键词: 图像分割, 主动轮廓线, 水平集方法, 局部熵, 窗函数

Abstract: This paper proposes a framework which allows any region-based active contours can be re-formulated in a local way. The energy function of this framework consists of a geometric regularization term that penalizes the length of region boundaries and a data fitting term in a local region. It uses a slide window function to extract the local entropy according to the relationship of spatial arrangements of image pixel, which can map intensity space of image to local entropy space. Another window function can be used to extract local region information so that getting the localizing region-based active contours framework. It takes CV model as an example to demonstrate it. The analysis and comparison of the two familiar window functions also can be done. Experimental results for images illustrate that this model can segment the cluttered images.

Key words: image segmentation, active contours, level set method\ local entropy, window function

中图分类号: