摘要: 具有最大分支数的0-1可逆矩阵被广泛应用于分组密码的扩散结构设计中。为构造16阶该类矩阵,将16阶0-1矩阵划分为以4阶0-1矩阵为单元的4阶块矩阵,根据特征和域上重量均为2的4维0-1向量相加后所得向量的重量分布特点,在行置换同构意义下构造满足某种特殊结构的4阶0-1矩阵单元组,以此为基础,根据Hadamard矩阵的结构特点,利用矩阵的分块构造思想,给出一类分支数达到最大值8的16阶0-1可逆矩阵和对合矩阵构造方法,并在行置换同构意义下给出对合矩阵的计数。
关键词:
分组密码,
扩散结构,
分支数,
0-1矩阵,
Hadamard矩阵
Abstract: 0-1 invertible matrice which has the largest branch number is widely used in the design of diffusion structures in block ciphers. In view of how to construct such 16×16 matrix, this paper divides 16×16 matrix into 4×4 block matrix by 4×4 0-1 matrix as a unit. Using the weight distribution peculiarity of the sum of 4-dimensional 0-1vectors with weight 2 in field of characteristic 2, it constructs 4×4 0-1 matrix unit group with some special structures in the permutation of isomorphism. On the basis of the structure characteristic of Hadamard matrice, it presents the methods of constructing 16×16 invertible 0-1 matrice with maximum branch number 8 using the matrix block construction method. Further, it presents the methods of constructing 16×16 involutory 0-1 matrice with maximum branch number 8 and their number in the permutation of isomorphism.
Key words:
block cipher,
diffusion structure,
branch number,
0-1 matrice,
Hadamard matrice
中图分类号:
郭磊,郑浩然,刘明伟. 一类具有最大分支数的16阶0-1矩阵构造[J]. 计算机工程.
GUO Lei, ZHENG Hao-ran, LIU Ming-wei. Construction of a 16×16 0-1 Matrice with Maximum Branch Number[J]. Computer Engineering.