(上接第231页)
参考文献
[1] Handschin J E, Mayne D Q. Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-stage Non-linear Filtering[J]. International Journal of Control, 1969, 9(5): 547-559.
[2] Zaritsky V S, Svetnik V B, Shimelevich L I. Monte Carlo Techniques in Problems of Optimal Information Processing[J]. Automation and Remote Control, 1975, 36(3): 2015-2022.
[3] Godsill S, Clapp T. Improvement Strategies for Monte Carlo Particle Filters[J]. Signal Processing, 1998, 2(1): 17-23.
[4] Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. Radar and Signal Processing, 1993, 140(2): 107-113.
[5] Carpenter J, Clifford P, Fearnhead R. Improved Particle Filter for Nonlinear Problems[J]. IEE Proceedings Radar, Sonar and Navigation, 1999, 146(1): 2-7.
[6] Nummiaro K, Koller-Meier E, van Gool L, et al. An Adaptive Color-based Particle Filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
[7] Hue C, Cadre J, Perez P. Tracking Multiple Objects with Particle Filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 791-812.
[8] Doucet A, de Freitas N, Gordon N. An Introduction to Sequential Monte Carlo Methods. Sequential Monte Carlo Methods in Practical[M]. New York, USA: Springer-Verlag, 2001.
[9] Hu Xiaoli, Schon T B, Ljung L. A Basic Convergence Result for Particle Filtering[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1337-1348.
[10] Crisan D, Doucet A. Convergence of Sequential Monte Carlo Methods[M]. Cambridge, UK: Cambridge University Press, 2000.
[11] Jie Jin, Zeng Jianchao, Han Chongzhao, et al. Knowledge- based Cooperative Particle Swarm Optimization[J]. Applied Mathematics and Computation, 2008, 205(2): 861-873.
[12] Bergh F V D. An Analysis of Particle Swarm Optimizers[D]. Cape Town, South Africa: Department of Computer Science, University of Pretoria, 2002.
编辑 索书志 |