[1] 朱大奇, 颜明重.移动机器人路径规划技术综述[J].控制与决策, 2010, 25(7):961-967. ZHU D Q, YAN M Z.Survey on technology of mobile robot path planning[J].Control and Decision, 2010, 25(7):961-967.(in Chinese) [2] PATLE B K, BABU L G, PANDEY A, et al.A review:on path planning strategies for navigation of mobile robot[J].Defence Technology, 2019, 15(4):582-606. [3] WAHAB M N A, NEFTI-MEZIANI S, ATYABI A.A comparative review on mobile robot path planning:classical or meta-heuristic methods?[J].Annual Reviews in Control, 2020, 50:233-252. [4] MASEHIAN E, SEDIGHIZADEH D.A multi-objective PSO-based algorithm for robot path planning[C]//Proceedings of International Conference on Industrial Technology.Washington D.C., USA:IEEE Press, 2010:465-470. [5] DORIGO M, MANIEZZO V, COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41. [6] SOLTANI A R, TAWFIK H, GOULERMAS J Y, et al.Path planning in construction sites:performance evaluation of the Dijkstra, A, and GA search algorithms[J].Advanced Engineering Informatics, 2002, 16(4):291-303. [7] 谭营, 郑少秋.烟花算法研究进展[J].智能系统学报, 2014, 9(5):515-528. TAN Y, ZHENG S Q.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems, 2014, 9(5):515-528.(in Chinese) [8] 谭营.烟花算法引论[M].北京:科学出版社, 2015. TAN Y.Introduction to fireworks algorithm[M].Beijing:Science Press, 2015.(in Chinese) [9] 张玮, 马焱, 赵捍东, 等.基于改进烟花-蚁群混合算法的智能移动体避障路径规划[J].控制与决策, 2019, 34(2):335-343. ZHANG W, MA Y, ZHAO H D, et al.Obstacle avoidance path planning of intelligent mobile based on improved fireworks-ant colony hybrid algorithm[J].Control and Decision, 2019, 34(2):335-343.(in Chinese) [10] 薛裕颖, 张祥银, 张国梁, 等.基于量子行为烟花算法的移动机器人路径规划及平滑[J].控制理论与应用, 2019, 36(9):1398-1408. XUE Y Y, ZHANG X Y, ZHANG G L, et al.Path planning and smoothing based on quantum-behaved fireworks algorithm for mobile robot[J].Control Theory & Applications, 2019, 36(9):1398-1408.(in Chinese) [11] 樊永生, 连云霞, 杨臻.改进烟花算法在虚拟士兵路径规划中的应用[J].计算机工程, 2018, 44(12):228-232. FAN Y S, LIAN Y X, YANG Z.Application of improved fireworks algorithm in path planning of virtual soldier[J].Computer Engineering, 2018, 44(12):228-232.(in Chinese) [12] PFEIFFER M, SCHAEUBLE M, NIETO J, et al.From perception to decision:a data-driven approach to end-to-end motion planning for autonomous ground robots[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2017:1527-1533. [13] TAI L, LIU M.Towards cognitive exploration through deep reinforcement learning for mobile robots[EB/OL].[2021-09-10].https://arxiv.org/pdf/1610.01733.pdf. [14] CHEN Y F, EVERETT M, LIU M, et al.Socially aware motion planning with deep reinforcement learning[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2017:1343-1350. [15] LAKSHMANAN A K, MOHAN R E, RAMALINGAM B, et al.Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot[J].Automation in Construction, 2020, 112:1-10. [16] YANG Y, LI J T, PENG L L.Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J].CAAI Transactions on Intelligence Technology, 2020, 5(3):177-183. [17] XIN L, SONG W, CAO Z G, et al.Multi-decoder attention model with embedding glimpse for solving vehicle routing problems[EB/OL].[2021-09-10].https://arxiv.org/abs/2012.10638v1. [18] LI J W, XIN L, CAO Z G, et al.Heterogeneous attentions for solving pickup and delivery problem via deep reinforcement learning[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):2306-2315. [19] LI J W, MA Y N, GAO R Z, et al.Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem[EB/OL].[2021-09-10].https://arxiv.org/abs/2110.02629v1. [20] WU Y X, SONG W, CAO Z G, et al.Learning improvement heuristics for solving routing problems[EB/OL].[2021-09-10].https://arxiv.org/abs/1912.05784. [21] CAI Y W, ZHAO H, LI M D, et al.3D real-time path planning based on cognitive behavior optimization algorithm for UAV with TLP model[J].Cluster Computing, 2019, 22(2):5089-5098. [22] 吉根林.遗传算法研究综述[J].计算机应用与软件, 2004, 21(2):69-73 JI G L.Survey on genetic algorithm[J].Computer Applications and Software, 2004, 21(2):69-73.(in Chinese) [23] HUANG H C, TSAI C C.Global path planning for autonomous robot navigation using hybrid metaheuristic GA-PSO algorithm[C]//Proceedings of SICE Annual Conference.Washington D.C., USA:IEEE Press, 2011:1338-1343. [24] STENTZ A.Optimal and efficient path planning for partially known environments[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 1994:203-220. [25] 付振秋, 季光, 杨瑛.改进型蚁群算法的AUV三维路径规划[J].舰船科学技术.2018, 40(19):72-77. FU Z Q, JI G, YANG Y.AUV three-dimensional path planning method based on improved antcolony optimization and particle swarm optimization[J].Ship Science and Technology, 2018, 40(19):72-77.(in Chinese) [26] NAZARAHARI M, KHANMIRZA E, DOOSTIE S.Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J].Expert Systems with Applications, 2019, 115:106-120. |