[1] GAO W X, TANG Q, YE B F, et al.An enhanced heuristic ant colony optimization for mobile robot path planning[J].Soft Computing, 2020, 24(8):6139-6150. [2] SEDIGHIZADEH D, MASEHIAN E, SEDIGHIZADEH M, et al.GEPSO:a new generalized particle swarm optimization algorithm[J].Mathematics and Computers in Simulation, 2021, 179:194-212. [3] LAMINI C, BENHLIMA S, ELBEKRI A.Genetic algorithm based approach for autonomous mobile robot path planning[J].Procedia Computer Science, 2018, 127:180-189. [4] WANG S M, ZHAO T T, LI W J.Mobile robot path planning based on improved artificial potential field method[C]//Proceedings of International Conference of Intelligent Robotic and Control Engineering.Lanzhou, China:[s.n.], 2018:29-33. [5] LIN M X, YUAN K, SHI C Z, et al.Path planning of mobile robot based on improved a algorithm[C]//Proceedings of the 29th Chinese Control and Decision Conference.Chongqing, China:[s.n.], 2017:3570-3576. [6] WU K Y, WANG H, ESFAHANI M A, et al.Achieving real-time path planning in unknown environments through deep neural networks[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):2093-2102. [7] 董永峰, 杨琛, 董瑶, 等.基于改进的DQN机器人路径规划[J].计算机工程与设计, 2021, 42(2):552-558. DONG Y F, YANG C, DONG Y, et al.Robot path planning based on improved DQN[J].Computer Engineering and Design, 2021, 42(2):552-558.(in Chinese) [8] JANSON L, SCHMERLING E, CLARK A, et al.Fast marching tree:a fast marching sampling-based method for optimal motion planning in many dimensions[J].International Journal of Robotics Research, 2013, 34(7):883-921. [9] 朱金辉, 梁明杰, 梁颖驹, 等.一种自适应加权快速探索随机树算法[J].计算机工程, 2010, 36(23):16-18. ZHU J H, LIANG M J, LIANG Y J, et al.Adaptive weighted rapidly-exploring random tree algorithm[J].Computer Engineering, 2010, 36(23):16-18.(in Chinese) [10] LAVALLE S M.Rapidly-exploring random trees:a new tool for path planning[D].Ames, USA:Lowa State University, 1998. [11] URMSON C, SIMMONS R.Approaches for heuristically biasing RRT growth[C]//Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2003:1178-1183. [12] KALISIAK M, VAN DE PANNE M.RRT-blossom:RRT with a local flood-fill behavior[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2006:1237-1242. [13] NOREEN I, KHAN A, HABIB Z.A comparison of RRT, RRT* and RRT*-smart path planning algorithms[J].International Journal of Computer Science and Network Security, 2016, 16(10):20-27. [14] 黄壹凡, 胡立坤, 薛文超.基于改进RRT-Connect算法的移动机器人路径规划[J].计算机工程, 2021, 47(8):22-28. HUANG Y F, HU L K, XUE W C.Mobile robot path planning based on improved RRT-connect algorithm[J].Computer Engineering, 2021, 47(8):22-28.(in Chinese) [15] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al.Informed RRT*-connect:an asymptotically optimal single-query path planning method[J].IEEE Access, 2020, 8:19842-19852. [16] 龙建全, 梁艳阳.多路口环境下RRT的最优路径规划[J].计算机工程与应用, 2020, 56(19):273-278. LONG J Q, LIANG Y Y.Optimal path planning of RRT in multi-intersection environment[J].Computer Engineering and Applications, 2020, 56(19):273-278.(in Chinese) [17] KARAMAN S, FRAZZOLI E.Sampling-based algorithms for optimal motion planning[J].The International Journal of Robotics Research, 2011, 30(7):846-894. [18] GAMMELL J D, SRINIVASA S S, BARFOOT T D.Batch Informed Trees(BIT):sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2015:3067-3074. [19] 许万, 杨晔, 余磊涛, 等.一种基于改进RRT*的全局路径规划算法[J].控制与决策, 2022, 37(4):829-838. XU W, YANG Y, YU L T, et al.A global path planning algorithm based on improved RRT*[J].Control and Decision, 2022, 37(4):829-838.(in Chinese) [20] GAMMELL J D, SRINIVASA S S, BARFOOT T D.Informed RRT:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2014:2997-3004. [21] RYU H, PARK Y.Improved informed RRT* using gridmap skeletonization for mobile robot path planning[J].International Journal of Precision Engineering and Manufacturing, 2019, 20(11):2033-2039. [22] RYU H.Hierarchical path-planning for mobile robots using a skeletonization-informed rapidly exploring random tree[J].Applied Sciences, 2020, 10(21):7846. [23] GUO Z C, HALL R W.Parallel thinning with two-subiteration algorithms[J].Communications of the ACM, 1989, 32(3):359-373. [24] ZHANG F, WANG Y S, GAO C Y, et al.An improved parallel thinning algorithm with two subiter-ations[J].Optoelectronics Letters, 2008, 4(1):69-71. [25] 张立亭, 黄晓浪, 鹿琳琳, 等.基于灰度差分与模板的Harris角点检测快速算法[J].仪器仪表学报, 2018, 39(2):218-224. ZHANG L T, HUANG X L, LU L L, et al.Fast Harris corner detection based on gray difference and template[J].Chinese Journal of Scientific Instrument, 2018, 39(2):218-224.(in Chinese) [26] HARRIS C, STEPHENS M.A combined corner and edge detector[C]//Proceedings of Alvey Vision Conference.Manchester, UK:Alvey Vision Club, 1988:147-151. [27] 王民, 周兆镇, 李昌华, 等.基于像素点灰度差的Harris角点检测算法[J].计算机工程, 2015, 41(6):227-230. WANG M, ZHOU Z Z, LI C H, et al.Harris corner detection algorithm based on pixel point gray difference[J].Computer Engineering, 2015, 41(6):227-230.(in Chinese) [28] GAMMELL J D, BARFOOT T D.The probability density function of a transformation-based hyperellipsoid sampling technique[EB/OL].[2021-04-20].https://arxiv.org/abs/1404.1347. [29] RUITER A H J, FORBES J R.On the solution of Wahba's problem on SO(n)[J].The Journal of the Astronautical Sciences, 2013, 60(1):1-31. |