参考文献
[1]Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems,Man,and
Cybernetics,Part B:Cybernetics,1996,26(1):2941.
[2]Johnson D S,Mcgeoch L A.The Traveling Salesman Problem:A Case Study in Local Optimization[M].New York,USA:John Wiley and Sons,Inc.,1996.
[3]Dorigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolu
tionary Computation,1997,1(1):5366.
[4]Stutzle T,Hoos H H.Maxmin Ant System[J].Future Generation Computer Systems,2000,16(8):889914.
[5]Yu Weijie,Zhang Jun.Pheromone Distribution Based Adaptive Ant Colony System[C]//Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation.Portland,USA:[s.n.],2010:3138.
[6]Abdelbar A M.Is There a Computational Advantage to Representing Evaporation Rate in Ant Colony Optimization as a Gaussian Random Variable[
C]//Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference.New York,USA:ACM Press,2012:18.
[7]Abdelbar A M,Wunsch D C.Improving the Performance of MaxMin Ant System on the TSP Using Stubborn Ants[C]//Proceedings of the 14th Inter
national Conference on Genetic and Evolutionary Computation.New York,USA:ACM Press,2012:13951396.
[8]李擎,张超,陈鹏,等.一种基于粒子群参数优化的改进蚁群算法[J].控制与决策,2013,28(6):873878.
[9]薛锋,王慈光,牟峰.基于信息熵和混沌理论的遗传蚁群协同优化算法[J].控制与决策,2011,26(1):4448.
[10]孟祥萍,片兆宇,沈中玉,等.基于方向信息素协调的蚁群算法[J].控制与决策,2013,28(5):782786.
[11]郑松,侯迪波,周泽魁.动态调整选择策略的改进蚁群算法[J].控制与决策,2008,23(2):225228.
[12]杨海,王洪国,侯鲁男,等.混沌蚁群算法及其在智能交通中的应用[J].成都大学学报:自然科学版,2008,26(4):309312.
[13]刘晓莹,蔡自兴,余伶俐,等.一种正交混沌蚁群算法在群机器人任务规划中的应用研究[J].小型微型计算机系统,2010,31(1):165167.
[14]Tavazoei M S,Haeri M.Comparison of Different Onedimensional Maps as Chaotic Search Pattern in Chaos Optimization Algorithms[J].Applied
Mathematics and Computation,2007,187(2):10761085.
[15]柯亨通.基于最大最小蚁群算法的配电网优化重构研究[D].武汉:华中科技大学,2013.
[16]柳贺,黄猛,黄道.基于混沌搜索的优化方法的研究进展[J].南京理工大学学报:自然科学版,2005,29(S1):130134.
[17]Gambardella L M,Dorigo M.AntQ:A Reinforcement Learning Approach to the TSP[C]//Proceedings of the 12th International Conference on
Machine Learning.Washington D.C.,USA:IEEE Press,1995:252260.
编辑索书志 |