作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (10): 69-79. doi: 10.19678/j.issn.1000-3428.0067993

• 热点与综述 • 上一篇    下一篇

基于改进狼群算法的无人机协同任务规划

彭泫滈1, 张娟2, 李辉1,3, 胡术1,3,*()   

  1. 1. 四川大学计算机学院软件学院, 四川 成都 610065
    2. 景德镇陶瓷大学信息工程学院, 江西 景德镇 333001
    3. 四川大学视觉合成图形图像技术国家级重点实验室, 四川 成都 610065
  • 收稿日期:2023-07-03 出版日期:2024-10-15 发布日期:2024-04-01
  • 通讯作者: 胡术
  • 基金资助:
    国家自然科学基金重点项目(U20A20161); "十三五"全军共用信息系统装备预研项目(31505550302)

Cooperative Mission Planning for UAV Based on Improved Wolf Pack Algorithm

PENG Xuanhao1, ZHANG Juan2, LI Hui1,3, HU Shu1,3,*()   

  1. 1. School of Software, School of Computer Science, Sichuan University, Chengdu 610065, Sichuan, China
    2. College of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, Jiangxi, China
    3. National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2023-07-03 Online:2024-10-15 Published:2024-04-01
  • Contact: HU Shu

摘要:

多无人机在现代化作战中的运用日渐增多, 无人机任务规划在无人机智能作战中至关重要。针对子系统能力约束下的无人机任务分配问题, 提出一种Levy Flight(LF)优化下基于拍卖机制的混沌反向学习狼群优化算法CRL-AMIWPA。首先, 定义无人机能力矩阵和任务场景, 对无人机异构性、任务执行能力、执行任务能力最低需求建立同一矩阵描述, 根据距离油耗和最迟任务完成时间的加权和建立目标函数, 建立子系统约束下的任务分配模型; 然后, 设计狼群个体编码, 每个编码方案包含一种任务分配策略, 针对未达到任务需求最低能力的解, 采用基于合同网的拍卖策略予以修正。另外, 在狼群初始化阶段, 采用Tent混沌算子和反向学习策略, 将狼群个体均匀地分布在解空间中, 以提高初始种群的多样性, 最后, 利用LF策略优化寻优过程, 提高跳出局部最优解的能力。仿真实验结果表明, 所提算法能有效解决在子系统约束场景下无人机任务分配问题, 相比其他群智能算法和狼群算法, 具有更优的寻优性和收敛速度。

关键词: 狼群算法, 任务分配, 混沌优化, 变步长优化, 群智能算法

Abstract:

The use of multiple Unmanned Aerial Vehicles (UAV) in modern warfare is increasing, making UAV mission planning crucial for intelligent UAV operations. In response to the UAV task allocation problem under subsystem capability constraints, this study proposes a chaos reverse learning wolf pack optimization algorithm, CRL-AMIWPA, based on Levy Flight(LF) optimization and auction mechanism. First, the UAV capability matrix and task scenario are defined. The heterogeneity of the UAVs, task execution capability, and minimum task execution requirements are described in the same matrix. The objective function is established by considering the weighted sum of distance fuel consumption and latest task completion time, and the task allocation model is established under subsystem constraints. Subsequently, the individual coding of the wolf pack is designed, whereby each coding scheme represents a task allocation strategy. A corrective auction strategy based on contract network is used for solutions that fail to satisfy the minimum task capability requirements. In addition, during the initialization stage of the wolf pack, the Tent chaos operator and reverse learning strategy are applied to distribute the wolf pack individuals evenly in the solution space and improve the diversity of the initial population. Finally, LF strategy is used to optimize the search process, thereby enhancing the ability to escape local optima. Simulation results demonstrate that the proposed algorithm effectively solves the UAV task allocation problem under subsystem-constraint scenarios and exhibits better optimization performance and convergence speed than other swarm intelligence and Wolf Pack Algorithms(WPA).

Key words: Wolf Pack Algorithm(WPA), task allocation, chaotic optimization, variable step size optimization, swarm intelligence algorithm